Structure and evolution

Pulsations

Asteroseismology

Conclusion

Internal rapid rotation and its implications for stellar structure and pulsations

D. R. Reese

July 11, 2014

UNIVERSITY^{OF} BIRMINGHAM

STELLAR ASTROPHYSICS CENTRE

Introduction ●○○○○ Structure and evolution

Pulsations

Asteroseismology

Conclusion

Massive stars

- dominant role in chemical evolution of galaxies
- supernovae
- progenitor of gamma-ray bursts

Crab nebula

(Hester et al. 2008)

Structure and evolution

Pulsations

Asteroseismology

Conclusion

Intermediate mass stars

- do not explode in supernovae
- many of the same physical phenomena
- much more numerous than massive stars
- very rich pulsation spectra

• a significant proportion of these are rapid rotators

D. R. Reese

Rapid rotation and its implications for stellar structure and pulsations

Introduction	Structure and evolution	Pulsations	Asteroseismology	Conclusion
Rotation a	nd its effects			

- in order to understand these stars, one needs to understand the impact of rotation on:
 - structure and evolution
 - pulsations

2 Impact of rotation on stellar structure and evolution

- Structural changes
- Baroclinic effects
- Impact on convection zones

Impact of rotation on stellar pulsations

- Gravito-inertial modes
- Acoustic modes
- Mixed modes

Asteroseismology

- Global asteroseismology
- Detailed asteroseismology

5 Conclusion

Introduction	Structure and evolution ●○○○○○○○	Pulsations	Asteroseismology	Conclusion
Centrifugal	deformation			

- the centrifugal acceleration distorts the shape of the star
- recent interferometric observations show very high distortions
- impact: such stars can only be modelled with 2D approaches

Achernar (α Eridani)

(Domiciano de Souza et al. 2003, 2012, Kervella & Domiciano de Souza 2006)

Introduction	Structure and evolution	Pulsations	Asteroseismology	Conclusion
Gravity d	arkening			

- rapid rotation causes the poles to be hotter than the equator
- **impact:** the position of these stars in an HR diagram depends on their inclination
- interferometry confirms this effect and can determine the inclination

• compares favourably with 2D simulations

D. R. Reese

Rapid rotation and its implications for stellar structure and pulsations

Baroclinic effects – impact on evolution

- enhanced transport: modified lifetime and different chemical yields
- improved agreement with observations (Meynet & Maeder 2005 and references therein)

Conclusion

Baroclinic effects – impact on evolution

- mismatch on N enrichment in some stars (Hunter et al. 2009, Brott et al. 2011)
- mismatch on core rotation rate of red giants (Eggenberger et al. 2012, Marques et al. 2013, Ceillier et al. 2013)

ntroduction	Structure and evolution	Pulsations	Asteroseismology	Conclusion

Impact on convection zones

- Espinosa Lara & Rieutord (2007): convective equatorial belts may exist
- Maeder et al. (2008): rotation favours convection in stellar envelopes, especially at the equator

Introduction	Structure and evolution ○○○○○○●○	Pulsations	Asteroseismology	Conclusion
Impact on	convection zones			

- open question: 2D prescription for convection in rotation models?
- answer may come from the CHORUS code (Wang et al., in prep.)

Rapid rotation and its implications for stellar structure and pulsations

ntroduction	Structure and evolution	Pulsations	Asteroseismology	Conc
00000	00000000	0000000000	0000000000000	

Summary

- rotation causes many new phenomena which affect stellar structure, transport processes, mixing, and evolution
- although there has been much progress, there are still large uncertainties
 - need for observational constraints on internal structure
 - asteroseismology is the best way to do this currently

usion

 Introduction
 Structure and evolution
 Pulsations

 00000
 000000000
 000000000

Asteroseismology

Conclusion

Impact of rotation on stellar pulsations

Structure and evolution

Pulsations

Asteroseismology

Conclusion

Gravito-inertial modes

- gravito-inertial modes: restoring force = buoyancy + Coriolis force
 - effect of Coriolis force $\propto 2\Omega/\omega$
- \bullet stars with such modes: γ Dor stars, SPBs, Be stars
- extensive literature inertial and singular modes:
 - Papaloizou & Pringle (1978), Lee (2006), Rieutord et al. (2000, 2002), Dintrans & Rieutord (2000), Mirouh et al. (poster)
- in what follows, I will focus on modes that become g-modes in the $\Omega \to 0$ limit

- when $\Omega \neq 0$, the period spacing depends on ℓ , *m* and $\eta = \frac{2\Omega}{\omega}$
 - first established with traditional approximation (Berthomieu et al. 1978); confirmed with full 2D computations (Ballot et al. 2012)

Introduction	Structure and evolution	Pulsations	Asteroseismology	Conclusion
Acoustic	modes			

- affected by centrifugal force $\propto \frac{\epsilon}{\lambda} \propto \omega \Omega^2$
- stars with such modes: δ Scuti stars, β Cephei stars

Introduction Structure and evolution Pulsations Asteroseismology Conclusion

Geometric structure

- based on ray dynamics, Lignières & Georgeot (2008, 2009) found different classes of modes:
 - separate geometry
 - separate frequency organisation
- extended to more realistic models (Reese et al. 2009)

9.0

Structure and evolution

Pulsations

Asteroseismology

Conclusion

Island modes

- most visible of the regular modes
- rotating counterparts to modes with low $\ell |m|$ values
- new quantum numbers:

$$\tilde{n} = 2n + \varepsilon$$

$$\tilde{\ell} = \frac{\ell - |m| - \varepsilon}{2}$$

$$\tilde{m} = m$$

$$\varepsilon = \ell + m \text{ modulo } 2$$

Introduction	Structure and evolution	Pulsations ○○○○○○●○○○	Asteroseismology	Conclusion
Frequencies	of island modes			

(Pasek et al. 2012)

• empirical fit (Reese et al. 2009): $\omega \simeq \Delta_{\tilde{n}} \tilde{n} + \Delta_{\tilde{\ell}} \tilde{\ell} + \frac{\Delta_{\tilde{m}} m^2}{z} - m\Omega + \tilde{\alpha}$

- $\Delta_{\tilde{n}}$ = travel time along ray path (Lignières & Georgeot 2008, 2009)
- $\Delta_{\tilde{\ell}}$: semi-analytical formula in Pasek et al. (2011, 2012)

(Reese et al. 2008)

 $\Delta \nu = 2\Delta_{\tilde{p}} \propto \sqrt{G\bar{\rho}}$

• this can constrain the mean density, even when Ω is large

Introduction	Structure and evolution	Pulsations ○○○○○○○●○	Asteroseismology	Conclusion

Mixed modes

• gravito-inertial modes $\propto \sqrt{GM/R_{
m pol}^3}$, acoustic modes $\propto \sqrt{Gar{
ho}}$

• rotation increases the overlap between p and g mode domain

Introduction	Structure and evolution	Pulsations ○○○○○○○○○●	Asteroseismology	Conclusion
Mixed m	odes			

- in evolved stars with mixed modes, rotation affects different members of a multiplet differently (Ouazzani et al. 2013)
 - $\bullet\,$ loss of equidistant spacing even for small Ω

Introduction	Structure and evolution	Pulsations	Asteroseismology	Conclusion
Asteroseisr	nology			

- Two approaches:
 - Average/global: focuses on the general characteristics of pulsation spectra rather than on specific modes
 - Detailed/ "boutique": relies on the identification of individual modes

Clabel		1 f	a da marta	
			• 000 0000000000	
Introduction	Structure and evolution	Pulsations	Asteroseismology	Conclus

Global asteroseismology – low frequency domain

•
$$\nu_{\text{inert.}} = |\nu_{\text{corot.}} - m\Omega|$$

- modes group together in clumps, separated by Ω
- use of non-adiabatic calculations to decide which clumps are excited
- see Savonije (2007), Saio et al. (2007), Dziembowski et al. (2007), Walker et al. (2008), Cameron et al. (2008)

• discrepancies between seismic and classical values of Ω in Be stars

Global asteroseismology – high frequency domain

- recurrent spacings in Fourier transform of frequency spectra
- interpreted as $\Delta
 u \Rightarrow$ constraint on mean density

(Reese et al. submitted)

- recurrent spacings found in a number of studies:
 - Breger et al. 2009, García Hernández et al. 2009, 2013, poster, Mantegazza et al. 2012, Suárez et al. 2014
- studies based theoretical spectra:
 - Lignières et al. 2010, Reese et al. submitted

Introduction	Structure and evolution	Pulsations	Asteroseismology	Conclusion
Detailed ast	eroseismology			

Why is it so difficult?

Structure and evolution

Pulsations

Asteroseismology

Conclusion

Detailed asteroseismology

	45	র জয়া⊽⊳ ব⊡ কা অব্চ⊳ ব∢কারা⊳ ব⊽ কা কা চে০০ব 2000কা কা⊽ ⊔ .
	40	ি ৮০৩ লকৰ কলেওৰা ওলেপীদকা আগলায়া ও দল ব ব ব
5		aao ⊳o ⊐qo o a⊧ bar⊲ano 85-aan as or ago pa as one
s per da	35	୍ବାବଶ କିଏନାଇଡ଼ା ଏ ଏଦିନାଏ ସ ସି ସିଏହାସ ସାନସନ ବ ଦ ଉପନେଇଡ଼
y (cycle:	30	ା ଏହା ଅନ୍ତ୍ରିବାସ ଅଭାପତ ଭାଇ । ସାହେତ ଏ ହେତିବେଷାସା ଭ ସ୍ପାତ ଭ
ouenbe	25	♥ 084 00 00₩ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
۱Ľ		। । । ।
	20	ପ୍ର⊳ ଫିଟ ୪ ୪ ଏ ସାହିଲାଲାଆରେ ସାସସା ସାଏସ ସ⊳ହିହିନି ଔଶ ସହେତିସହ ସା ବାଳେ ହେଇ ୪ ଏସା ବି
	15	- Bao (ab rational as be activitied as be activitied as reacted as rational as r
		0 0.5 1 1.5 2 2.5 3 3.5 Frequency Modulo Chosen Frequency Interval
		(Deupree et al. 2012)

mode identification is a real challenge

Structure and evolution

Pulsations

Asteroseismology

Conclusion

Detailed asteroseismology

Mode identification techniques

- still try to look for frequency patterns
- multi-colour photometry
 - amplitude ratios, phase differences
 - advantages: intrinsic amplitude factors out, simpler observations
- spectroscopy: LPVs
 - advantage: more detailed information
- these methods need to be adapted to rapidly rotating stars

Introduction	Structure and evolution	Pulsations	Asteroseismology	Conclusion
- 1 II II				

Echelle diagrams

- g-modes: Bedding's talk
- p-modes: García Hernández et al. 2013, poster

- see also Townsend (2003), Daszyńska-Daszkiewicz et al. (2002, 2007), Lignières et al. (2006), Lignières & Georgeot (2009)
- the amplitude ratios for a given multiplet depend on *m*, *unlike for spherical stars*
- the amplitude ratios remain similar for fixed (ℓ, m) values

Structure and evolution

Pulsations

Asteroseismology

Conclusion

Multi-colour mode identification

- compare observed amplitude ratios between each other
 - \Rightarrow group modes with similar (ℓ, m) values

Structure and evolution

Pulsations

Asteroseismology

Conclusion

Spectroscopic signatures

- theory: Lee & Saio (1990), Clement (1994), Townsend (1997), R+
- observations: Telting & Schrijvers (1998), Poretti et al. (2009), poster by Themeßl et al.
- mode identification tools such as FAMIAS (Zima 2008) need to be adapted to rapid rotation

Introduction	Structure and evolution	Pulsations	Asteroseismology ○○○○○○○○○○●○○	Conclusion
NI	dente sele le terre	_		

Non-adiabatic calculations

- these mode identification techniques need $\delta {\it T}_{\rm eff} / {\it T}_{\rm eff}$
 - only non-adiabatic calculations yields this accurately
- mode excitation only from non-adiabatic calculations
- previous studies: Lee & Baraffe (1995) + subsequent papers
 - models based on Chandrasekhar expansion
- current work: based on rapidly rotating ESTER models
 - only 2D models in which the energy equation is solved self-consistently

Structure and evolution

Pulsations

Asteroseismology

Conclusion

Non-adiabatic calculations

• a given pulsation mode (stabilised by rotation)

Introduction Structure and evol		Structure and evolution	Pulsations	Asteroseismology ○○○○○○○○○○○●	Conclu

sion

Introduction	Structure and evolution	Pulsations	Asteroseismology ○○○○○○○○○○○○	C

onclusion

Structure and evolution

Pulsations

Asteroseismology

Conclusion

Non-adiabatic calculations

• a multiplet (the retrograde modes are stabilised first)

Introduction	Structure and evolution	Pulsations	Asteroseismology ○○○○○○○○○○○○○●	
NI	and the second second second			

Conclusion

Introduction	Structure and evolution	Pulsations	Asteroseismology ○○○○○○○○○○○○●

Conclusion

Introduction		Structure a	nd evolution	Pulsations	Asteroseismology ○○○○○○○○○○○○●	Co

nclusion

Introduction		Structure a	nd evolution	Pulsations	Asteroseismology ○○○○○○○○○○○○●	Concl
		-				

sion

Introduction	Structure and evolution	Pulsations	Asteroseismology	Conclusion
Conclusion				

- rapid rotation plays a major role in massive and intermediate mass stars
 - these stars are important for many domains in astrophysics
- multiple effects both on structure and evolution
 - better understanding of these effects
 - many unanswered questions remain
- impact on stellar pulsations
 - progress on understanding these effects and interpreting seismic data
 - more work needed, especially with current (MOST, CoRoT, Kepler, BRITE) and future data (PLATO)