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Introduction: what are rosette modes?
discovered by Ballot et al. (2012) in numerical calculations

I a class of eigenmodes
found in rotating stars in
the g-mode frequency
range outside of the
inertial domain (σ > 2Ω)

I rosette pattern:
characteristic structure of
the kinetic-energy density
distribution on the
meridional plane
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Ordinary modes vs. rosette modes
ordinary modes rosette modes

Ω = 0.0ΩK, ω = 1.3645 Ω = 0.1ΩK, ω = 1.3712

` = 25, n = −37, m = 0

distributions of the kinetic-energy density on the meridional plane
multiplied by r2



How are rosette modes formed?

Takata & Saio (2013)

I close degeneracies among high-degree g modes (in the
absence of rotation)

asymptotic formula: ωn, ` ∝
√
` (`+ 1)

|n|
(ωn, ` ≈ const. if `/n is fixed for `� 1.)

I interaction among the closely-degenerate eigenmodes (with
the same parity of `) caused by the second-order effects of the
Coriolis force

I described by quasi-degenerate perturbation theory:
eigenfunctions of rosette modes can be expressed by linear
combinations of eigenfunctions in the non-rotating limit.



Close degeneracies

`–ω diagram of the polytropic model with index 3
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Asymptotic analysis of rosette modes (1)

Takata (2014)

I close degeneracies:

an + b` = f

(a, b, f : integers)

I rosette structure:

Kπ

2
− Z (r)± θ ± qπ

2
= 0, π

where

I Z (r) =

∫ r

r1

1

s

[
N2(s)

σ2
− 1

]1/2
ds

I K =
2b

a
: integer

I q: real number (0 < q < 1)

Ω = 0.15ΩK, ω = 1.3804
K = 3, q = 0.373



Asymptotic analysis of rosette modes (2)
rosette patterns and close degeneracies

two parameters K and q to
characterize the rosette patterns:

I K =
2b

a
: integer

⇒ ∆Θ =
Kπ

2

I q: real number (0 < q < 1)

⇒ ∆Φ =
qπ

2

∆Θ

∆Φ

∆Θ
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(K = 3, q = 0.35)



Rosette modes in a realistic stellar model (1)

I 5 M� ZAMS model with
X = 0.70 and Z = 0.02
(a model of SPB stars)

I many high-degree g
modes excited by the
iron opacity bump at
T ≈ 2× 105 K without
rotation
(the OP opacity is used)

I a family of the close
degeneracy that satisfies
2n + 3l = 1 (K = 3)
(modes with ` = 7, 9, · · · , 17
are unstable) 0 5 10 15 20
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Rosette modes in a realistic stellar model (2)

nonadiabatic mode analysis with rotation [cf. Lee & Baraffe (1995)]

I unstable rosette modes found for
Ω . 0.25ΩK (veq . 150 km)

I only modes with considerable
contribution from unstable
components (in the non-rotation
limit) are excited.

I the damping is caused by stable
components (particularly those
with high degrees).

Excitation of Family C Rosette modes in a 5M⊙ ZAMS model
HS(June 11, 2014)

1 Distributions of kinetic energy density

Nonadiabatic rosette modes of family C were calculated using Lee & Baraffe’s method including
18 components (l = 1, 3, . . . , 35) for m = 0, ±1. The nonadiabatic properties and kinetic energy
distributions of r, θ components of |m| = 1 modes hardly differ form those of the axisymmetric
modes. Shown below are the distributions of kinetic energy density of some m = 0 family C
rosette modes. There should be more modes between the second lowest frequency mode and
the second highest frequency mode.

Axisymmetric rosette modes of family C at Ω = 0.20ΩK

2 Excitation

1



Rosette modes in a realistic stellar model (3)

angular momentum transport by waves [cf. Lee (2013)]

I angular momentum conservation (Lagrangian mean-flow
treatment):

〈ρ〉 d 〈lz〉
dt

= −div
〈
~F
〉

I lz : specific angular momentum about the rotation axis
I ~F : angular momentum flux

~F =
∂p′

∂φ
~ξ +

∂Φ′

∂φ

(
〈ρ〉 ~ξ +

∇Φ′

4πG

)
I 〈f 〉: azimuthal average in the mean-flow coordinates

I effects on the local angular momentum:
damping excitation

prograde modes + −
retrograde modes − +



Rosette modes in a realistic stellar model (4)

I no significant difference in
the spherical averages of〈
~F
〉

between rosette and

ordinary modes

I conspicuous latitudinal

dependence of div
〈
~F
〉

Horizontal rosette modes tend to be excited, for which contributions from components of
l > 20 are small. Smallest frequency modes of m = 0 and 1 are also excited, but the patterns
of these modes are weak.

4

distribution of −div
〈
~F
〉

[blue (red) for positive (negative) values]



Summary

I formation: rosette modes are formed by the interaction of
closely-degenerate eigenmodes with the same parity of the
spherical degree; the interaction is caused by the second-order
effect of the Coriolis force.

I asymptotic analysis: a simple relation can be derived to
describe the rosette structures in terms of parameters that
specify the close degeneracy.

I nonadiabatic calculation & angular momentum transport:
some unstable rosette modes have been found in a model of
SPB stars; those modes might contribute to the angular
momentum transport in the stars in a unique way.



Nonaxisymmetric rosette modes (1)

Saio & Takata (2014)

I the first-order effect of the
Coriolis force need to be
small for nonaxisymmetric
rosette modes to form:

|Cn,`| � 1

[cf. ∆σ = m (1− Cn,`) Ω]



Nonaxisymmetric rosette modes (2)

rosette modes that arise from family D
retrograde axisymmetric prograde
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Fig. 6. Same as in figure 2, but for family D with odd l’s (≥ 5). Note that
the crossings between two lines for the same value of m are avoided
crossings. (Color online)

We note that the distribution of the kinetic-energy den-
sity for the azimuthal motions in the lowest-frequency ret-
rograde rosette modes is well confined around the rotation
axis. This might have important consequences in the trans-
port of angular momentum. In order to evaluate the effects,
we need a nonadiabatic analysis, which will be discussed in
another paper in this series.

The properties of family A with odd l are very similar
to those of family A with even l discussed above except
that the separation of the lowest-frequency prograde mode
is more pronounced because the odd family A consists of

members with l ≥ 3 rather than l ≥ 4 in the even family A,
and because C−3, 3 > C−4, 4 (figure 1).

3.2 Family D with odd l; n + 2l = 0

In this subsection we briefly discuss rosette modes of family
D with odd l. We have calculated modes by adopting the
family members as

DD = {(n, l)|l = 5, 7, . . . , 27; n + 2l = 0}. (32)

Relatively high-order g modes are involved in this family.
The dimensionless frequencies are approximately equal to
1.1, which is much smaller than those of family A (figure 1).
Figure 6 shows variations of the five lowest frequencies
of family D as a function of the rotation frequency, !.
Compared with the corresponding diagram in figure 2
for family A, the first-order effect, −mCn, l!, is generally
small so that the deviations from axisymmetric frequen-
cies are smaller in the case of family D; in particular, the
frequencies of retrograde modes are very close to those
of axisymmetric modes, although prograde modes still
deviate considerably.

Figure 7 shows the distribution of kinetic-energy density
for the two lowest-frequency modes for m = 0, ±1, and ±2
at ! = 0.2 !K in the same way as in figure 4. The lowest-
frequency mode of m = 2 is essentially an l = 5 ordinary
mode. In addition, the m = 2 mode in the second row of this
figure is strongly influenced by the l = 7 component and can
hardly be considered as a rosette mode. The situation looks
worse than the case of the second-lowest frequency m = 2
mode of family A (figure 4, the second row, in which the
l = 6 component makes the largest contribution). This can
be understood as follows; although Cn, l is generally smaller

Fig. 7. Same as in figure 4, but for the lowest and the second-lowest frequency modes of family D (with odd l’s). (Color online)
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clearer rosette patterns in retrograde modes (m < 0) than in
prograde modes (m > 0)



Gallery of rosette modes

multiple rosette modes arise from a family of the close degeneracy

ω = 1.7195 ω = 1.7211 ω = 1.7235 ω = 1.7257

distributions of the kinetic-energy density on the meridional plane
multiplied by r2 for family A (with odd `) of the polytropic model

with index 3 at Ω = 0.2ΩK
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