Rosette modes of oscillations in rotating stars as
a new aspect of rotation-pulsation interaction
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Introduction: what are rosette modes?
discovered by Ballot et al. (2012) in numerical calculations

Q=0.2Qk, w = 1.7195 Q=0.2Q, w = 1.7235

10°

> a class of eigenmodes 10-1
found in rotating stars in

the g-mode frequency 1072

range outside of the .

10-2

inertial domain (o > 2Q)

Q=0.1Qk, w = 1.3712 Q =010, w = 1.3717

» rosette pattern:
characteristic structure of
the kinetic-energy density
distribution on the
meridional plane

(polytropic model with index 3)



Ordinary modes vs. rosette modes
ordinary modes rosette modes

Q =0.0Qk, w = 1.3645 Q=0.1Qk, w = 1.3712
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distributions of the kinetic-energy density on the meridional plane
multiplied by r?



How are rosette modes formed?

Takata & Saio (2013)

» close degeneracies among high-degree g modes (in the
absence of rotation)

((0+1)

asymptotic formula: w, y o ]
' n

(wn, ¢ = const. if £/n is fixed for £ > 1.)
> interaction among the closely-degenerate eigenmodes (with
the same parity of /) caused by the second-order effects of the
Coriolis force
» described by quasi-degenerate perturbation theory:

eigenfunctions of rosette modes can be expressed by linear
combinations of eigenfunctions in the non-rotating limit.



Close degeneracies

{—w diagram of the polytropic model with index 3

4.0
o
35 Py .
. o 'glo . °
30f° coe T
2.5 . co
. “E.
3 20 ’ : N
Y S S
15 . oo N A
B* € ==
SRR TS I S I 1 I
10 . R - N
0 5 10 15 20

:n+/¢=0

(K=2)

:2n+3=0

(K =3)

:2n+430=1

(K =3)

:n+20=0

(K = 4)

2n+4=0

(K =1)



Asymptotic analysis of rosette modes (1)

Takata (2014)

> close degeneracies:
an+ bl =f
(a, b, f: integers)

» rosette structure:

K
%—Z(r)i&ﬁ:qg —0, 7
where
r 2 1/2
. Z(r):/ 1{’\’ (25) —1} ds
n g

2b
» K = —: integer
a

> ¢: real number (0 < g < 1) K =3, qg=0373



Asymptotic analysis of rosette modes (2)
rosette patterns and close degeneracies

two parameters K and g to
characterize the rosette patterns:

2b
» K = —: integer
a

K
= AOQ = T
2
» g: real number (0 < g < 1)
qm
= A0 = —
2

(K =3, g=0.35)



Rosette modes in a realistic stellar model (1)

> 5 Mgy ZAMS model with
X =0.70 and Z = 0.02
(a model of SPB stars)

» many high-degree g
modes excited by the
iron opacity bump at
T ~ 2 x 10° K without
rotation
(the OP opacity is used)

> a family of the close
degeneracy that satisfies
2n+3/=1(K =3)
(modes with ¢ =7,9, --- | 17

are unstable)
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Rosette modes in a realistic stellar model (2)

nonadiabatic mode analysis with rotation [cf. Lee & Baraffe (1995)]

» unstable rosette modes found for
Q $0.25Q0k (Veq S 150km)

» only modes with considerable
contribution from unstable
components (in the non-rotation
limit) are excited.

the damping is caused by stable
components (particularly those
with high degrees).
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Rosette modes in a realistic stellar model (3)

angular momentum transport by waves [cf. Lee (2013)]

» angular momentum conservation (Lagrangian mean-flow

treatment):
d </z> I
— —div (F)
(o) —
I: specific angular momentum about the rotation axis
F: angular momentum flux

= 0p - 09 - Vo'
F ——
0@)5+ 0 <<p>£+ 47rG)

>
>

» (f): azimuthal average in the mean-flow coordinates
» effects on the local angular momentum:
‘ damping excitation
+ —
- +

prograde modes
retrograde modes




Rosette modes in a realistic stellar model (4)

10° 10°
» no significant difference in
the spherical averages of 10t 10t
F > between rosette and
. 107 107
ordinary modes
» conspicuous latitudinal w0 o2
dependence of div <F>
410" 110"
w=1.1445,m = -1
J110°® 110%
LJ10°® LJ10°

distribution of —div <F‘

[blue (red) for positive (negative) values]



Summary

» formation: rosette modes are formed by the interaction of
closely-degenerate eigenmodes with the same parity of the
spherical degree; the interaction is caused by the second-order
effect of the Coriolis force.

» asymptotic analysis: a simple relation can be derived to
describe the rosette structures in terms of parameters that
specify the close degeneracy.

» nonadiabatic calculation & angular momentum transport:
some unstable rosette modes have been found in a model of
SPB stars; those modes might contribute to the angular
momentum transport in the stars in a unique way.



Nonaxisymmetric rosette modes (1)

Saio & Takata (2014)

Polytropic model (N = 3, T| = 5/83)
T T T T

T \;/V

1 =3

T

» the first-order effect of the 0.04
Coriolis force need to be
small for nonaxisymmetric

rosette modes to form: o
0.02

’C,Lg <1

[ef. Ao =m(1— G, /)]

|
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Nonaxisymmetric rosette modes (2)

rosette modes that arise from family D
retrograde axisymmetric prograde

w=1.1378, m=-2 w=1.1378, m= -1 w=1.1370,m=0 b : w=1.1275,m=2

clearer rosette patterns in retrograde modes (m < 0) than in
prograde modes (m > 0)



Gallery of rosette modes

multiple rosette modes arise from a family of the close degeneracy

w=17195 w=17211 w=1.7235 w = 17257

distributions of the kinetic-energy density on the meridional plane
multiplied by r> for family A (with odd /) of the polytropic model
with index 3 at 2 = 0.20xk
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