Rosette modes of oscillations in rotating stars as a new aspect of rotation-pulsation interaction

Masao Takata ${ }^{1}$ Hideyuki Saio ${ }^{2}$
${ }^{1}$ Department of Astronomy, School of Science, University of Tokyo
${ }^{2}$ Astronomical Institute, Graduate School of Science, Tohoku University

11 Jul. 2014

Introduction: what are rosette modes?

discovered by Ballot et al. (2012) in numerical calculations

- a class of eigenmodes found in rotating stars in the g-mode frequency range outside of the inertial domain ($\sigma>2 \Omega$)

$$
\Omega=0.2 \Omega_{\mathrm{K}}, \omega=1.7195 \quad \Omega=0.2 \Omega_{\mathrm{K}}, \omega=1.7235
$$

$$
\Omega=0.1 \Omega_{\mathrm{K}}, \omega=1.3712 \quad \Omega=0.1 \Omega_{\mathrm{K}}, \omega=1.3717
$$

- rosette pattern:
characteristic structure of the kinetic-energy density distribution on the meridional plane

Ordinary modes vs. rosette modes

ordinary modes	rosette modes
$\Omega=0.0 \Omega_{\mathrm{K}}, \omega=1.3645$	$\Omega=0.1 \Omega_{\mathrm{K}}, \omega=1.3712$

$$
\ell=25, n=-37, m=0
$$

distributions of the kinetic-energy density on the meridional plane multiplied by r^{2}

How are rosette modes formed?

Takata \& Saio (2013)

- close degeneracies among high-degree g modes (in the absence of rotation)

$$
\begin{aligned}
& \text { asymptotic formula: } \omega_{n, \ell} \propto \frac{\sqrt{\ell(\ell+1)}}{|n|} \\
& \qquad\left(\omega_{n, \ell} \approx \text { const. if } \ell / n \text { is fixed for } \ell \gg 1 .\right)
\end{aligned}
$$

- interaction among the closely-degenerate eigenmodes (with the same parity of ℓ) caused by the second-order effects of the Coriolis force
- described by quasi-degenerate perturbation theory: eigenfunctions of rosette modes can be expressed by linear combinations of eigenfunctions in the non-rotating limit.

Close degeneracies

$\ell-\omega$ diagram of the polytropic model with index 3

A : $n+\ell=0$
($K=2$)
B : $2 n+3 \ell=0$
($K=3$)
C : $2 n+3 \ell=1$
($K=3$)
D : $n+2 \ell=0$
($K=4$)
$\mathrm{E}: 2 n+\ell=0$
($K=1$)

Asymptotic analysis of rosette modes (1)
Takata (2014)

- close degeneracies:

$$
\begin{aligned}
& a n+b \ell=f \\
& (a, b, f: \text { integers })
\end{aligned}
$$

- rosette structure:

$$
\frac{K \pi}{2}-Z(r) \pm \theta \pm \frac{q \pi}{2}=0
$$ where

- $Z(r)=\int_{r_{1}}^{r} \frac{1}{s}\left[\frac{N^{2}(s)}{\sigma^{2}}-1\right]^{1 / 2} \mathrm{~d} s$
- $K=\frac{2 b}{a}$: integer
- q : real number $(0<q<1)$

$$
\begin{gathered}
\Omega=0.15 \Omega_{\mathrm{K}}, \omega=1.3804 \\
K=3, q=0.373
\end{gathered}
$$

Asymptotic analysis of rosette modes (2)

rosette patterns and close degeneracies
two parameters K and q to characterize the rosette patterns:

- $K=\frac{2 b}{a}$: integer
$\Rightarrow \Delta \Theta=\frac{K \pi}{2}$
- q : real number $(0<q<1)$

$$
\Rightarrow \Delta \Phi=\frac{q \pi}{2}
$$

$$
(K=3, q=0.35)
$$

Rosette modes in a realistic stellar model (1)

- $5 M_{\odot}$ ZAMS model with $X=0.70$ and $Z=0.02$ (a model of SPB stars)
- many high-degree g modes excited by the iron opacity bump at $T \approx 2 \times 10^{5} \mathrm{~K}$ without rotation
(the OP opacity is used)
- a family of the close degeneracy that satisfies $2 n+3 I=1(K=3)$
(modes with $\ell=7,9, \cdots, 17$
are unstable)

Rosette modes in a realistic stellar model (2)

nonadiabatic mode analysis with rotation [cf. Lee \& Baraffe (1995)]

- unstable rosette modes found for $\Omega \lesssim 0.25 \Omega_{\mathrm{K}}\left(v_{\text {eq }} \lesssim 150 \mathrm{~km}\right)$
- only modes with considerable contribution from unstable components (in the non-rotation limit) are excited.
- the damping is caused by stable components (particularly those with high degrees).

Rosette modes in a realistic stellar model (3)

angular momentum transport by waves [cf. Lee (2013)]

- angular momentum conservation (Lagrangian mean-flow treatment):

$$
\langle\rho\rangle \frac{d\left\langle I_{z}\right\rangle}{d t}=-\operatorname{div}\langle\vec{F}\rangle
$$

- I_{z} : specific angular momentum about the rotation axis
- F: angular momentum flux

$$
\vec{F}=\frac{\partial p^{\prime}}{\partial \phi} \vec{\xi}+\frac{\partial \Phi^{\prime}}{\partial \phi}\left(\langle\rho\rangle \vec{\xi}+\frac{\nabla \Phi^{\prime}}{4 \pi G}\right)
$$

- $\langle f\rangle$: azimuthal average in the mean-flow coordinates
- effects on the local angular momentum:

	damping	excitation
prograde modes	+	-
retrograde modes	-	+

Rosette modes in a realistic stellar model (4)

- no significant difference in the spherical averages of $\langle\vec{F}\rangle$ between rosette and ordinary modes
- conspicuous latitudinal dependence of $\operatorname{div}\langle\vec{F}\rangle$

distribution of $-\operatorname{div}\langle\vec{F}\rangle$
[blue (red) for positive (negative) values]

Summary

- formation: rosette modes are formed by the interaction of closely-degenerate eigenmodes with the same parity of the spherical degree; the interaction is caused by the second-order effect of the Coriolis force.
- asymptotic analysis: a simple relation can be derived to describe the rosette structures in terms of parameters that specify the close degeneracy.
- nonadiabatic calculation \& angular momentum transport: some unstable rosette modes have been found in a model of SPB stars; those modes might contribute to the angular momentum transport in the stars in a unique way.

Nonaxisymmetric rosette modes (1)
Saio \& Takata (2014)

- the first-order effect of the Coriolis force need to be small for nonaxisymmetric rosette modes to form:

$$
\begin{gathered}
\left|C_{n, \ell}\right| \ll 1 \\
{\left[\text { cf. } \Delta \sigma=m\left(1-C_{n, \ell}\right) \Omega\right]}
\end{gathered}
$$

Nonaxisymmetric rosette modes (2)
rosette modes that arise from family D

$$
\begin{array}{lll}
\text { retrograde } \quad \text { axisymmetric } & \text { prograde }
\end{array}
$$

clearer rosette patterns in retrograde modes $(m<0)$ than in prograde modes ($m>0$)

Gallery of rosette modes

multiple rosette modes arise from a family of the close degeneracy

$$
\omega=1.7195
$$

$$
\omega=1.7211
$$

$\omega=1.7235$

$\omega=1.7257$

distributions of the kinetic-energy density on the meridional plane multiplied by r^{2} for family A (with odd ℓ) of the polytropic model with index 3 at $\Omega=0.2 \Omega_{\mathrm{K}}$

References

- Ballot, J. et al., 2012, ASP Conf. Ser., 462, 389
- Lee, U., 2013, PASJ, 65, 122
- Lee, U. \& Baraffe, I., 1995, A\&A, 301, 419
- Saio, H. \& Takata, M., 2014, PASJ, 66, psu027
- Takata, M., 2014, PASJ, 66, in press
- Takata, M. \& Saio, H., 2013, PASJ, 65, 68

