

The peculiar transit signature of CoRoT-29b

J. Cabrera and the CoRoT Exoplanet Science Team

Extrasolar Planets and Atmospheres Institute of Planetology German Aerospace Center (DLR) Berlin, Germany

07.07.2014

Knowledge for Tomorrow

Folie 1 / 30 CoRoT-29b > San Fermin

introduction

Grat

the Team

Transiting exoplanets from the CoRoT space mission * XXVIII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet

VIII. CoRoT-28b, a planet orbiting an evolved star, and CoRoT-29b, a planet orbiting an oblated star

J. Cabrera¹, Sz. Csizmadia¹, G. Montagnier², M. Fridlund¹, M. Ammler-von Eiff³, S. Chaintreuil⁴, C. Damiani⁵, M. Deleuil⁵, S. Ferraz-Mello⁶, A. Ferrigno⁴, D. Gandolfi⁷, T. Guillot⁸, E. W. Guenther^{3,9}, A. Hatzes³, G. Hébrard², P. Klagyivik^{10,11}, H. Parviainen¹², Th. Pasternacki¹, M. Pätzold¹³, D. Sebastian³, M. Tadeu dos Santos⁶, G. Wuchterl³, S. Aigrain¹², R. Alonso¹⁰, J.-M. Almenara⁵, J.D. Armstrong^{14, 15}, M. Auvergne⁴, A. Baglin⁴, P. Barge⁵, S. Barros⁵, A. S. Bonomo¹⁶, P. Bordé¹⁷, F. Bouchy⁵, S. Carpano¹⁸, C. Chaffey¹⁹, H. J. Deeg^{10,11}, R. F. Díaz²⁰, R. Dvorak²¹, A. Erikson¹, S. Grziwa¹³, J. Korth¹³, H. Lammer⁹, C. Lindsay²², T. Mazeh²³, C. Moutou²⁴, A. Ofir²⁵, M. Ollivier¹⁷, H. Rauer^{1,26}, D. Rouan⁴, B. Samuel⁴, A. Santerne²⁷, and J. Schneider²⁸

introduction

fact sheet

- planetary parameters
 - $\blacktriangleright\,$ mass: 0.85 \pm 0.20 $M_{Jupiter}$
 - radius: 0.90 ± 0.16 R_{Jupiter}
 - density: 1.45 ± 0.74 g cm⁻³
 - ▶ log g: 3.42 ± 0.19 (cgs)
- stellar parameters
 - $\blacktriangleright\,$ mass: 0.97 $\pm\,$ 0.14 M_{Sun}
 - \blacktriangleright radius: 0.90 \pm 0.12 R_{Sun}
 - $T_{\rm eff}$: 5260 ± 100K
 - ▶ log g: 4.52 ± 0.19 (cgs)
 - ▶ age: 1 8 Gyr
 - K0V

- $\blacktriangleright~$ P: 2.850 522 \pm 0.000 076 d
- a: 0.0386 ± 0.0059 AU
- K: 125 ± 17 m s⁻¹
- ▶ i: 87.3 ± 2.7°
- e: 0.082 ± 0.081

the CoRoT observations

Folie 4 / 30

the CoRoT observations

Folie 5 / 30

the CoRoT observations

and a

the CoRoT observations

Folie 7 / 30 > San Fermin

confirmation from ground-based observations

Folie 8 / 30 > San Fermín

confirmation from ground-based observations

- the transit is significantly asymmetric
- confirmed from ground

the planet

tidal distortion of the planet

$$J_{2} = \frac{k_{2}}{3} (q_{r} - q_{t}); \ q_{r} = \frac{\Omega^{2} R_{p}^{3}}{G M_{p}}; \ q_{t} = -3 \left(\frac{R_{p}}{a}\right)^{3} \left(\frac{M_{p}}{M_{s}}\right)$$
(1)

see Ragozzine & Wolf (2009); Leconte et al. (2011)

the planet

tidal distortion of the planet

$$J_{2} = \frac{k_{2}}{3} (q_{r} - q_{t}); \ q_{r} = \frac{\Omega^{2} R_{\rho}^{3}}{G M_{\rho}}; \ q_{t} = -3 \left(\frac{R_{\rho}}{a}\right)^{3} \left(\frac{M_{\rho}}{M_{s}}\right)$$
(1)

see Ragozzine & Wolf (2009); Leconte et al. (2011) • disk

the planet

tidal distortion of the planet

$$J_{2} = \frac{k_{2}}{3} (q_{r} - q_{t}); \ q_{r} = \frac{\Omega^{2} R_{p}^{3}}{G M_{p}}; \ q_{t} = -3 \left(\frac{R_{p}}{a}\right)^{3} \left(\frac{M_{p}}{M_{s}}\right)$$
(1)

see Ragozzine & Wolf (2009); Leconte et al. (2011)

- disk
- rings, moons...

discarded by the data

stellar spots

Folie 11 / 30 > San Fermin

stellar spots

gravity darkening

$$\chi^2 = 71$$
 (62 p; 12 f; $\chi^2_r = 1.4$)

VDLR

stellar spots

Folie 13 / 30 CoRoT-29b > San Fermin

stellar spots

Fig. 1.3.—The average Doppler image of V410 Tau shown in stereographic projection at four rotation phases ($\phi = 0.0, 0.25, 0.50$, and 0.75). All pixels with a temperature less than 500 K below the photospheric value are shown as spotted regions (crosses). All other image pixels are displayed as photosphere (white).

V410 Tau by Hatzes (1995)

stellar spots

- the spot scenario is ad hoc
- stability over 1 yr required (ground-based observations)
- polar spot (and misaligned orbit)
- slow rotating, main sequence star

stellar spots

- the spot scenario is ad hoc
- stability over 1 yr required (ground-based observations)
- polar spot (and misaligned orbit)
- slow rotating, main sequence star
- discarded by the data

gravity darkening

Folie 16 / 30 > San Fermin

CoRoT-29b: the origin of the asymmetry gravity darkening

Figure 1. Schematic showing transit geometry along with some of the parameters referred to in the text such as planet orbit azimuth α , transit impact parameter b, stellar obliquity φ , stellar rotation rate Ω , equatorial radius R_{eq} , and polar radius R_{eq} .

Barnes (2009) ApJ, 705

CoRoT-29b > San Fermin

gravity darkening

201

Zhou & Huang (2013) ApJ, 776

gravity darkening

effective gravitational potential

$$V = -\frac{GM_{\rm s}}{R(b)} \left(1 - J_2 \left(\frac{R_{\rm s,eq}}{R(b)} \right)^2 P_2(\sin b) \right) - \frac{1}{2} \Omega_{\rm rot}^2 R^2(b) \cos^2 b \quad (2)$$

(see, for example, Zahn et al. 2010)

gravity darkening

effective gravitational potential

$$V = -\frac{GM_{\rm s}}{R(b)} \left(1 - J_2 \left(\frac{R_{\rm s,eq}}{R(b)} \right)^2 P_2(\sin b) \right) - \frac{1}{2} \Omega_{\rm rot}^2 R^2(b) \cos^2 b \quad (2)$$

(see, for example, Zahn et al. 2010)

▶ *J*₂ = 0.028 ± 0.019

gravity darkening

effective gravitational potential

$$V = -\frac{GM_{\rm s}}{R(b)} \left(1 - J_2 \left(\frac{R_{\rm s,eq}}{R(b)} \right)^2 P_2(\sin b) \right) - \frac{1}{2} \Omega_{\rm rot}^2 R^2(b) \cos^2 b \quad (2)$$

(see, for example, Zahn et al. 2010)

•
$$J_2 = 0.028 \pm 0.019$$

►
$$J_2^{\odot} = (1.7 \pm 0.4) \cdot 10^{-7}$$
 (Lang 1999)

gravity darkening

effective gravitational potential

$$V = -\frac{GM_{\rm s}}{R(b)} \left(1 - J_2 \left(\frac{R_{\rm s,eq}}{R(b)} \right)^2 P_2(\sin b) \right) - \frac{1}{2} \Omega_{\rm rot}^2 R^2(b) \cos^2 b \quad (2)$$

(see, for example, Zahn et al. 2010)

- $J_2 = 0.028 \pm 0.019$
- $J_2^{\odot} = (1.7 \pm 0.4) \cdot 10^{-7}$ (Lang 1999)
- ▶ WASP-33 *J*₂ = 3.8 · 10⁻⁴ (lorio 2011)

gravity darkening

effective gravitational potential

$$V = -\frac{GM_{\rm s}}{R(b)} \left(1 - J_2 \left(\frac{R_{\rm s,eq}}{R(b)} \right)^2 P_2(\sin b) \right) - \frac{1}{2} \Omega_{\rm rot}^2 R^2(b) \cos^2 b \quad (2)$$

(see, for example, Zahn et al. 2010)

• $J_2 = 0.028 \pm 0.019$

►
$$J_2^{\odot} = (1.7 \pm 0.4) \cdot 10^{-7}$$
 (Lang 1999)

- ▶ WASP-33 *J*₂ = 3.8 · 10⁻⁴ (lorio 2011)
- ► star has solar radius and is not rotating fast $(v \sin i = 3.5 \pm 0.5 \,\mathrm{km \, s^{-1}})$

gravity darkening

gravity darkening

planetary orbit is misaligned

Albrecht et al. (2012) ApJ, 7757

gravity darkening

planetary orbit is misaligned

Albrecht et al. (2012) ApJ, 7757 (adapted)

by way of conclusion

open questions

- what is the origin of the stellar asymmetry?
 - how to conciliate J₂ and k₂ theory and observations?
- what is the age of the star?
 - fundamental to study the tidal evolution
- have we missed something?

CoRoT-29b > San Fermin

CoRoT-29b

contamination

Folie 24 / 30 oT-29b > San Fermín

CoRoT-29b

raw light curve

Folie 25 / 30 > San Fermin

CoRoT-29b

raw light curve

Folie 26 / 30 > San Fermin

27/30

CoRoT-29b

raw light curve

CoRoT-28b

fact sheet

- planetary parameters
 - \blacktriangleright mass: 0.484 \pm 0.087 $M_{Jupiter}$
 - radius: 0.955 ± 0.066 R_{Jupiter}
 - density: 0.60 ± 0.27 g cm⁻³
 - ▶ log g: 3.12 ± 0.14 (cgs)
- stellar parameters
 - \blacktriangleright mass: 1.01 \pm 0.14 M_{Sun}
 - radius: 1.78 ± 0.11 R_{Sun}
 - $T_{\rm eff}$: 5150 ± 100K
 - ▶ log g: 3.94 ± 0.12 (cgs)
 - age: 12.0 ± 1.5 Gyr
 - G8/9IV

- orbital parameters
 - $\blacktriangleright~$ P: 5.208 66 \pm 0.000 34 d
 - a: 0.0603 ± 0.0050 AU
 - K: 56.4 ± 4.9 m s⁻¹
 - ▶ i: 88.1 ± 0.8°
 - e: 0.047 ± 0.038

CoRoT-28b

tidal interactions

Folie 29 / 30 CoRoT-29b > San Fermin

CoRoT-28b

tidal interactions

