FROM SUPER-EARTHS TO BROWN DWARFS:

THE PLANET-DIVERSITY REVOLUTION

ALEXANDRE SANTERNE
INSTITUTO DE ASTROFÍSICA E CIÊNCAS DO E'SPAÇO (IA) CENTRO DE ASTROFÍSICA DA UNIVERSIDADE DO PORTO

ALEXȦNDRE.SANTERNE@ASTRO.UP.PT

OUTLINE

- The planet-diversity revolution: from super-earths to brown dwarfs
- Limitations to the exploration of planet's density
- Planet statistics

THE REVOLUTION

THE REVOLUTION

THE REVOLUTION

THE REVOLUTION

TRANSITING EXOPLANETS = COMPARATIVE PLANETOLOGY

Know the mass \& density: know the nature (rocky, Neptune-like, giant, brown dwarf, ...)

(ZLOZ) 'Te 子ə IYOS

CHARACTERIZE THE MASS: THE TWO MAIN TECHNIQUES

Spectrographs:
SOPHIE, HARPS, HARPS-N, HiReS, HET, ...

Transit Timing Variations

+ phase variations (ellipsoidal, beaming)

THE PLANET-DIVERSITY REVOLUTION

BC:
 before CoRoT

THE PLANET-DIVERSITY REVOLUTION

THE PLANET-DIVERSITY REVOLUTION

Deleuil et al. (2008), Bouchy et al. (2010), Johnson et al. (2011), Bouchy et al. (2011), Moutou et al. (2013), Díaz et al. (2013)
+2 ground-based detections

THE PLANET-DIVERSITY REVOLUTION

BC: before CoRoT

THE PLANET-DIVERSITY REVOLUTION

BC:
 before CoRoT

THE PLANET-DIVERSITY REVOLUTION

THE PLANET-DIVERSITY REVOLUTION

RVs: Queloz et al. (2009)

THE PLANET-DIVERSITY REVOLUTION

With CoRoT \& Kepler

RVs: Queloz et al. (2009), Batalha et al. (2010), Pepe et al. (2013), Howard et al. (2013), Marcy et al. (2014), Dumusque et al. (2014)
TTVS: Lissauer et al. (2011), Cochran et al. (2011), Gautier et al. (2012), Fabrycky et al. (2012), Carter et al. (2012), Gilliland et al. (2013), Nesvorný et al.(2013), Xie (2014)

TTVs Vs RVs ?

TTVs is one of the main revolution of space photometry for the characterization of transiting exoplanets

TTVs Vs RVs ?

TTVs is one of the main revolution of space photometry for the characterization of transiting exoplanets

On the mass of KOI-94 d ...

TTVs Vs RVs ?

TTVs is one of the main revolution of space photometry for the characterization of transiting exoplanets

On the mass of KOI-94 d ...

$m_{d}=106 \pm 11 \mathrm{M}_{\oplus}$
Weiss et al. (2013)

$m_{d}=52.1_{-7.1}^{+6.9} \mathrm{M}_{\oplus}$
Masuda et al. (2013)

KOI-142:
"The King of Transit Timing"

Barros et al. (2014)

TTVs Vs RVs ?

TTVs is one of the main revolution of space photometry for the characterization of transiting exoplanets

On the mass of KOI-94 d ...

$m_{d}=106 \pm 11 \mathrm{M}_{\oplus}$
Weiss et al. (2013)

$m_{d}=52.1_{-7.1}^{+6.9} \mathrm{M}_{\oplus}$
Masuda et al. (2013)

KOI-142:
"The King of Transit Timing"

Barros et al. (2014)

TTVs vs RVs : Who's right?

TTVs Vs RVs ?

A systematic bias?
 ... or a physical property of packed planetary system?

TTVs Vs RVs ?

Weiss \& Marcy (2014)
A systematic bias?
... or a physical property of packed planetary system?

Need more RV / TTV comparison

STELLAR ACTIVITY

Barros et al. (2012)
Oshagh et al. (2013)

Planet-spot occultation might create fake TTVs / TDVs

CHARACTERIZED PLANETS

~600 candidates detected

 27 planets characterized (with mass constraint > 3σ)~ 4000 candidates detected 80 planets characterized (with mass constraint > 3σ)

WHAT ABOUT THE OTHER CANDIDATES ?

TTVs: need systems close to orbital resonance

Astrophysical false POSITIVES

Undiluted eclipsing binary

Planet

Diluted eclipsing binary / giant planet

The Planet-VALIDATION TECHNIQUE (то тне rescue)

Main objective:

validate statistically the planetary nature when other techniques cannot

The Planet-VALIDATION TECHNIQUE (то тне rescue)

Main objective:

 validate statistically the planetary nature when other techniques cannot

Almenara et al. (2011)

The Planet-VALIDATION TECHNIQUE (to the rescue)

Main objective:

 validate statistically the planetary nature when other techniques cannot

Torres et al. (2011)

The Planet-VALIDATION TECHNIQUE (то тнe rescue)

Main objective:

validate statistically the planetary nature when other techniques cannot

16

The Planet-VALIDATION TECHNIQUE (то тне rescue)

Main objective:

 validate statistically the planetary nature when other techniques cannot

TWO MAIN TOOLS

BLENDER

Torres et al. (2011), Fressin et al.

$$
(2011,12 a, b)
$$

computing time:

 a few 10000 hours
PASTIS

Díaz et al. (2014), Santerne et al. (in prep.),
Almenara et al. (in prep.)

VALIDATED PLANETS

Summary of BLENDER validations

VALIDATED PLANETS

G. Torres 2013 @ Planet-Validation Workshop

EXOPLANET STATISTICS WITH Kepler CANDIDATES

The key for statistical study of Kepler candidates: The False-Positive Probability !

EXOPLANET STATISTICS WITH Kepler CANDIDATES

The key for statistical study of Kepler candidates: The False-Positive Probability !

- Morton \& Johnson (2011): median FPP ~ 5\% (modelisation)
- Santerne et al. (2012): 35\% for giant close-in candidates (observations: SOPHIE data)
- Fressin et al. (2013): global FPP ~ 9.4\% (modelisation)
- Santerne et al. (2013): re-evaluation of Fressin's value to 11.3% (modelisation)
- Santerne et al. (in prep.): ~50\% for all giant candidates (observations: SOPHIE data)

EXOPLANET STATISTICS WITH Kepler CANDIDATES

The key for statistical study of Kepler candidates: The False-Positive Probability !

- Morton \& Johnson (2011): median FPP ~ 5\% (modelisation)
- Santerne et al. (2012): 35\% for giant close-in candidates (observations: SOPHIE data)
- Fressin et al. (2013): global FPP ~ 9.4\% (modelisation)
- Santerne et al. (2013): re-evaluation of Fressin's value to 11.3% (modelisation)
- Santerne et al. (in prep.): $\sim 50 \%$ for all giant candidates (observations: SOPHIE data)

Table 3
For multiples (Lissauer et al., 2012, 14):

$$
\begin{aligned}
& F P P=\frac{n_{F P}}{n_{K O I s}} \Rightarrow \begin{array}{l}
p(F P)=\frac{n_{F P}}{n_{\star}} \\
p(p l)=\frac{n_{K O I s}-n_{F P}}{n_{\star}}
\end{array} \\
& p(2 F P s)=p(F P) \times p(F P) \\
& p(1 p l+1 F P)=p(1 p l) \times p(F P)
\end{aligned}
$$

Statistical Estimates of Unidentified False Positives in Multis

Class (Formula)	Expected Number (for $\mathcal{P}_{1}=0.9$)
2 FPs (Equation (2))	0.063
3 FPs (Equation (3))	2.0×10^{-5}
1 planet + 1 FP (Equation (4))	1.447
1 planet + 2 FPs (Equation (5))	5.3×10^{-4}
$\geqslant 2$ planets + 1 FP (Equation (6))	0.517
$\geqslant 2$ planets + 2 FPs (Equation (7))	1.9×10^{-4}
Total FPs (Number of false candidates)	2.09

A NEW "CLASS" OF CONSTRAINTS

OCCURRENCE OF PLANETS

$\mathrm{M}_{\mathrm{p}} \sin (\mathrm{i})$

Simulation:
Mordasini et al. (2009)

Kepler:
Fressin et al. (2013)

M_{p}

R_{p}

The occurrence of habitable EarthLIKE PLANETS AROUND M DWARFS

HARPS

102 M dwarfs
Msin(i) $<10 \mathrm{Me}$
2 Super-Earth in HZ
$\rightarrow \eta_{\oplus}=41^{+54}-13 \%$
Bonfils et al. (2013)

Kepler
3897 M dwarfs
0.5 $\mathrm{Re}<\mathrm{R}_{\mathrm{p}}<1.4 \mathrm{Re}$

2 Earth-size planetcandidates in HZ

$$
\rightarrow \eta_{\oplus}=15^{+13}-6 \%
$$

Dressing \& Charbonneau (2013)
But FPP ~ 0\% assumed !
\rightarrow Planetary nature needed!

OCCURRENCE OF EARTH ANALOGS

Petigura, Howard \& Marcy (2013)

$$
\begin{aligned}
& 22 \pm 8 \% \text { of Sun-like } \\
& \text { stars harbor an Earth- } \\
& \text { size planet in the HZ }
\end{aligned}
$$

PLANET STATISTICS LIMITATIONS

Planet statistics need:

- Accurate false-positive rate
- Accurate pipeline completeness
- Accurate planetary radius (based on accurate stellar radius)
- Accurate definition of the HZ
- High number statistics
- No extrapolation

COMPARISON COROT / KEPLER

OCCURRENCE OF HOT-JUPITERS

OCCURRENCE OF SmALL Neptunes

Kepler detected nearly twice more Neptunes than CoRoT

Bonomo et al. (2012)

DIFFERENT STELLAR POPULATION

DIFFERENT STELLAR POPULATION

CONCLUSIONS

- Space-photometry revolution = planet-diversity revolution (super-Earths \& Brown dwarfs).
- TTVs: efficient technique to characterize exoplanets based on photometric data.
- Some discrepancy exists between RVs' and TTVs' mass (need to be further explored).
- Planet-validation tools (e.g. BLENDER, PASTIS) can establish the planetary nature of small \& cool planets.
- CoRoT \& Kepler provided constraints on planet statistics (occurrence rates, distribution, etc..) mostly based on their radius.
- Need more characterized planets to derive statistics of rocky, Neptune-like, ... planets.
- Occurrence rates from CoRoT and Kepler give different results \rightarrow different stellar population?

CONCLUSIONS

- Space-photometry revolution = planet-diversity revolution (super-Earths \& Brown dwarfs).
- TTVs: efficient technique to characterize exoplanets based on photometric data.
- Some discrepancy exists between RVs' and TTVs' mass (need to be further explored).
- Planet-validation tools (e.g. BLENDER, PASTIS) can establish the planetary nature of small \& cool planets.
- CoRoT \& Kepler provided constraints on planet statistics (occurrence rates, distribution, etc..) mostly based on their radius.
- Need more characterized planets to derive statistics of rocky, Neptune-like, ... planets.
- Occurrence rates from CoRoT and Kepler give different results \rightarrow different stellar population?
- Thanks for your attention -

EXTRAPOLATING THE FPP TOWARD SMALLER CANDIDATES

