CoRoT3 / KASC7 – Toulouse – 07/2014

Calibrating core overshooting in low-mass stars with *Kepler* data

S. Deheuvels, V. Silva-Aguirre, M. Cunha,T. Appourchaux, J. Ballot, I. Brandaõ,Y. Lebreton, E. Michel, M. Monteiro

Extension of convective cores

• Several physical processes could extend the size of convective cores : *overshooting, semi-convection, rotational mixing...*

 \Rightarrow large uncertainties on stellar ages

- Implementation in 1D stellar models
 - instantaneous mixing: simple extension of the mixed core over

 $d_{\rm ov} = \alpha_{\rm ov} \min(H_P, R_{\rm c})$

- diffusive mixing
- turbulent convection models

Existing constraints on core overshooting

- Color-Magnitude diagrams of clusters
 - Main Sequence lifetime extended with overshooting
- **Eclipsing binaries** 0.8Claret et al. (2007) 0.6 \Rightarrow need for **extended cores** $\mathbf{\alpha}_{_{\mathrm{OV}}}$ with $\alpha_{ov} \sim 0.2$ 0.4an increase of α_{ov} with \Rightarrow 0.2stellar mass? \subset 0.51.0 1.5 0 $\log M/M_{\odot}$
- Seismology ۲
 - Evidence for an extended core in several MS stars

(Deheuvels et al. 2010, Degroote et al. 2010, Neiner et al. 2012, Silva-Aguirre et al. 2013, Goupil et al. 2013)

How seismology can probe the core size

- The core boundary induces an acoustic glitch
- \Rightarrow mode frequencies "oscillate" as a function of radial $\alpha_{ov} = 0.00$ order (Gough 1990) $\alpha_{ov} = 0.10$ $\alpha_{ov} = 0.15$ Seismic indexes sensitive to the core $\alpha_{ov} = 0.20$ $1.15 M_{\odot}$ models $- r_{010}$ ratios (Roxburgh & Vorontsov 2003) 0.05 observational 0.04 range $rac{dd_{01}(n)}{\Delta
 u_1(n)}$ r_{01} 0.03 $rac{dd_{10}(n)}{\Delta
 u_0(n+1)}$ r₀₁₀ (µHz) $r_{10} =$ 0.02 0.01 period \leftrightarrow depth of glitch 0.00 amplitude \leftrightarrow intensity of glitch -0.01 E 2000 4000 5000 1000 3000 6000 7000

see also Silva Aguirre et al. (2013), Cunha & Brandaõ et al. (2011), Brandaõ & Cunha al. (2014)

Frequency (μ Hz)

How seismology can probe the core size

• 2^{nd} order polynomial fit to the r_{010} ratios

$$P(\nu) = a_0 + a_1(\nu - \beta) + a_2(\nu - \gamma_1)(\nu - \gamma_2)$$

 a_0, a_1, a_2 : coefficients of the 2nd order polynomial fit

 β , γ_1 , γ_2 : determined to have a basis of orthogonal polynomials

• Use of the mean value a_0 and mean slope a_1 of r_{010} ratios to constrain the core size

(Popielski & Dziembowski 2005, Deheuvels et al. 2010, Silva Aguirre et al. 2011)

Testing the seismic diagnostic

- Grid of models: evolution code CESAM2k + oscillation code LOSC (with varying mass, age, metallicity, helium abundance, core overshooting)
- 3 goals:
 - 1. Validate the diagnostic
 - Determine a list of criteria to select the best Kepler targets
 - 3. Interpret these data by confronting them to the grid of models and obtain constraints on α_{ov} if possible

Evolution of r_{010} ratios in time

 $1.2-M_{\odot}$ models

Evolution of r_{010} ratios in time

 $1.2-M_{\odot}$ models

Effects of core overshooting

• Effect of core overshooting on the evolutionary tracks in the (a₁, a₀) plane

 \Rightarrow Effects of other parameters?

Grid of models at fixed Δv

Selection of Kepler targets

- Choice of optimal targets to probe the core size:
 - evolved enough so a $\nabla \mu$ has had time to build up
 - not too evolved so that $\ell=1$ modes are not yet mixed

 $\Rightarrow 60 \ \mu {\rm Hz} \lesssim \Delta \nu \lesssim 110 \ \mu {\rm Hz}$

- Need for a good frequency resolution (at least 10 *Kepler* quarters)
 - \Rightarrow 24 *Kepler* targets chosen among Chaplin et al. (2014)

Extraction of mode frequencies

- Extraction of l=0 and l=1 mode frequencies using maximum likelihood estimation (MLE)
 - Only high-SNR modes retained
- r_{010} ratios for 2 of the selected targets:

Confronting observations to the grid of models

- Evolutionary status disentangled for 22 stars: 12 MS stars / 10 PoMS stars / 2 uncertain
- Among MS stars, convective core detected for 8 stars

Constraints on the size of the convective core

Results

- Evolutionary status disentangled for 22 stars (12 MS / 10 PoMS)
- Among MS stars, **convective core** detected for 8 stars
- Stars that have a convective core draw a *very consistent picture of core overshooting*
 - <u>all the targets</u> require an extension of the core beyond the Schwarzschild limit ($\alpha_{ov} > 0$)
 - <u>none of the targets</u> are consistent with an extension beyond 0.2 H_p ($\alpha_{ov} < 0.2$)
 - Only the most massive target (1.37 ${\rm M}_{\odot})$ consistent with $\alpha_{\rm ov} \sim 0.2$

\Rightarrow Dependence of core overshooting on stellar mass?

Core overshooting vs stellar mass

- Optimization runs using the **Levenberg-Marquardt** algorithm (Miglio & Montalban 05)
 - Optimal grid models used as a starting point
 - Grids of models enable to avoid secondary minima
 - Yields more precise estimate of α_{ov}
- Constraints:
 - <u>Classical:</u> T_{eff} , $(Z/X)_{surf}$, logg_{seism}
 - <u>Seismic</u>: lowest-order radial modes, a_0 , a_1 , a_2
- Free parameters:
 - Mass, age, Y_i , $(Z/X)_i$, α_{ov}

Core overshooting vs stellar mass

- Optimization runs using the Levenberg-Marquardt algorithm (Miglio & Montalban 05)
 - Optimal grid models used as a starting point
 - Grids of models enable to avoid secondary minima
 - Yields more precise estimate of α_{ov}
- Constraints:
 - $\underline{Classical:}_{eff} T_{eff}, (Z/X)_{surf}, \\ \log g_{seism}$
 - <u>Seismic</u>: lowest-order radial modes, a₀, a₁, a₂
- Free parameters:
 - Mass, age, Y_i , $(Z/X)_i$, α_{ov}

Core overshooting vs stellar mass

• Constraints on core overshooting from low-mass PoMS stars

Upper limit to α_{ov} for 6 targets

Conclusion & Perspectives

- The coefficients of a polynomial fit to the r_{010} ratios can be used to
 - Determine the **evolutionary status**
 - Test the **existence of a convective core**
 - Estimate the **extension of the core** if it exists
- Application to 24 Kepler targets $(0.9 < M/M_{\odot} < 1.4)$
 - Constraints on α_{ov} for 14 stars
 - $0 < \alpha_{ov} < 0.2$
 - α_{ov} increases with stellar mass for low-mass stars

Conclusion & Perspectives

• Calibrate extension of convective cores as a function of stellar mass (other parameters?)

$$\alpha_{\rm ov} = (0.55 \pm 0.06) M + (-0.59 \pm 0.07)$$

- Model-dependent results
- \Rightarrow need to study in more details the impact of
 - Description of core overshooting (diffusive overshooting with GARSTEC)
 - Different microphysics
- Extend this study to F stars