

The Space Photometry Revolution, Toulouse, July 10, 2014

The photometry revolution

B.C. Ibanoglu et al. 2009, MNRAS

The photometry revolution

B.C. Ibanoglu et al. 2009, MNRAS A.C. CoRoT 8170 (a.k.a. HD 172189)

An enormous gain in terms of:

- number of observed points
- accuracy
- Monitoring interval & duty cycle

The pulsating EB zoo

Iterative procedure

JKTEBOP (Southworth+ 2004)

KIC 3858884: a highly eccentric eclipsing binary & δ Sct pulsator

KIC 3858884: a highly eccentric eclipsing binary & δ Sct pulsator

Recipe for a successful disentangling:

 first order correction: during pulsator eclipse the pulsation amplitude is weighted with the fraction of light from the eclipsed star

Recipe for a successful disentangling:

- first order correction: during pulsator eclipse the pulsation amplitude is weighted with the fraction of light from the eclipsed star
- lower order orbital overtones (in this case up to ~ 15 f_{orb}) shall not be pre-whitened (due to eccentricity 'bump")

83 high-res spectra (BOES, HRS, HERMES, TLS) R=30000-83000

RVs atmospheric parameters

83 high-res spectra (BOES, HRS, HERMES, TLS) R=30000-83000

 $f (d^{-1})$

7.47927(20)

7.23012(25)

f2

Ampl. (kms^{-1})

3.03(24)

2.80(25)

phase

0.805(15)

0.600(15)

Photometry
f ₁ ~ 7.231 d ⁻¹
f ₂ ~ 7.473 d ⁻¹

83 high-res spectra (BOES, HRS, HERMES, TLS) R=30000-83000

83 high-res spectra (BOES, HRS, HERMES, TLS) R=30000-83000

Frequencies found in the O-C residuals

.231 d ⁻¹		$f (d^{-1})$	Ampl. (kms^{-1})	phase
170 d-1	f1	7.47927(20)	3.03(24)	0.805(15)
.4/Ju'	f2	7.23012(25)	2.80(25)	0.600(15)

83 high-res spectra (BOES, HRS, HERMES, TLS) R=30000-83000

Physical parameters

Light and radial velocity curve solution: with FITBINARY (PHOEBE-WD + a genetic algorithm, PIKAIA, for <u>global minimum search</u>)

High eccentricity

- similar masses

- different R, T_{eff}

slightly evolved

primary

		System	
<i>i</i> (°)		88.176 ± 0.002	
e		0.465 ± 0.002	
ω		$21.61^\circ\pm0.01$	
q		0.988 ± 0.02	
$a(R_{\odot})$		57.22 ± 0.22	
	Primary		Secondary
$T_{\rm eff}$ (K)	$6800^a \pm 70$		6606 ± 70
$M(M_{\odot})$	1.88 ± 0.03		1.86 ± 0.04
$R(R_{\odot})$	3.45 ± 0.01		3.05 ± 0.01
$\log g$	3.63 ± 0.01		3.74 ± 0.01

a) Fixed value, $\pm 1\sigma$ from spectroscopic analysis.

Pulsational analysis

Pulsational analysis

after EB subtraction: 403 frequencies with $S/N > 4 (\xi < 12)$ range: 0.3 - 20 d⁻¹ (Period04 and SigSpec)

Pulsational analysis

	Frequency (d^{-1})	Amplitude (10^{-3})	Phase (2π)	remark	
f_1	7.2306 ± 0.0001	10.15 ± 0.21	0.411 ± 0.002		
f_2	7.4734 ± 0.0001	9.10 ± 0.15	0.106 ± 0.001		
f_3	9.8376 ± 0.0002	1.96 ± 0.07	0.190 ± 0.002		
f_4	7.5125 ± 0.0002	1.75 ± 0.06	0.646 ± 0.002	$f_2+f_{ m orb}$	
f_5	6.7358 ± 0.0002	1.55 ± 0.05	0.476 ± 0.002		
f_6	9.5191 ± 0.0002	1.24 ± 0.04	0.786 ± 0.003		
f_7	14.7041 ± 0.0002	1.15 ± 0.04	0.768 ± 0.002	$f_1 + f_2$	
f_8	11.7257 ± 0.0002	1.02 ± 0.04	0.575 ± 0.003		1 -
f_9	14.7253 ± 0.0003	0.59 ± 0.03	0.330 ± 0.004		
f_{10}	7.3628 ± 0.0003	0.54 ± 0.03	0.264 ± 0.004]]]
f_{11}	7.2424 ± 0.0004	0.51 ± 0.03	0.351 ± 0.005		
f_{12}	7.4621 ± 0.0004	0.50 ± 0.03	0.988 ± 0.005		
f_{13}	0.6971 ± 0.0004	0.38 ± 0.03	0.721 ± 0.005	$18 f_{\rm orb}, {\rm gd}$	
:					
		⊲ 4 -			
aftar F	-Reubtraction			6 8 10) 12 14 16
		_		C	
403 fr	equencies with	2-	f 4	J 3	-
	/ (5 ~ 10)	-			-
	$4(\zeta < 12)$	- J 13			-
range	: 0.3 - 20 d ⁻¹		Land Land Land Land Land Land	Later Contraction Contractor	
(Daria	d01 and SigSpa	\sim 0	5	10 1	5 20
	uut anu siyspe	U)	~	a (1=1)	

f (d *

I. High frequency variability

- Clustering of non-radial modes (Dziembowski & Królikowska, 1990): some low order (l=1) modes in δ Sct
- trapped in the envelope
- higher probability of excitation to observable amplitude
- close to radial mode frequency
- \Rightarrow clustering \Rightarrow preferred spacings

Breger et al. 2009, MNRAS 396, 291

I. High frequency variability

- Clustering of non-radial modes (Dziembowski & Królikowska, 1990): some low order (l=1) modes in δ Sct
- trapped in the envelope
- higher probability of excitation to observable amplitude
- close to radial mode frequency
- \Rightarrow clustering \Rightarrow preferred spacings

Breger et al. 2009, MNRAS 396, 291

EB-SB2: known log g : $F \approx 7.5 d^{-1}$ • $f_2 = 7.47 d^{-1}$: fundamental radial model • $f_1 = 7.23 d^{-1}$: non-radial mode

II. Low frequency variability

II. Low frequency variability

High order g-modes? Hybrid γ Dor - δ Sct ?

Asymptotic regime (Tassoul 1980):

$$\sigma_{n\ell} = \frac{\sqrt{\ell(\ell+1)}}{\pi(n+1/2)}\Im$$

$$\Im = \int_{r_1}^{r_2} \frac{N}{r} dr$$

Integral of the Brunt-Väisälä frequency, *N*, along the cavity

Moya et al. 05: (fixed l)

$$\frac{f_i}{f_j} \approx \frac{n_j + 1/2}{n_i + 1/2} \,\frac{\Im_i}{\Im_j} \approx \frac{n_j + 1/2}{n_i + 1/2}$$

II. Low frequency variability

High order g-modes? Hybrid γ Dor - δ Sct ?

Asymptotic regime (Tassoul 1980):

$$\sigma_{n\ell} = \frac{\sqrt{\ell(\ell+1)}}{\pi(n+1/2)}\Im$$

$$\Im = \int_{r_1}^{r_2} \frac{N}{r} dr$$

Integral of the Brunt-Väisälä frequency, *N*, along the cavity

Moya et al. 05: (fixed l)

$$\frac{f_i}{f_j} \approx \frac{n_j + 1/2}{n_i + 1/2} \,\frac{\Im_i}{\Im_j} \approx \frac{n_j + 1/2}{n_i + 1/2}$$

Frequency ratios (Moya et al. 05)

n_{f47} : radial order of f₄₇

ratios up to n=120

n	n	n	n	T	T
48	35	27	23	367.8 ± 0.4	2718 ± 3
60	44	34	29	460.8 ± 0.4	2170 ± 6
83	61	47	40	635.0 ± 1.4	1575 ± 4
85	62	48	41	648.6 ± 1.3	1542 ± 3
96	70	54	46	729.8 ± 2.1	1370 ± 4
97	71	55	47	741.6 ± 1.8	1348 ± 4
108	79	61	52	822.8 ± 1.0	1215 ± 2
109	80	62	53	834.5 ± 2.9	1198 ± 4
112	82	63	54	852.7 ± 1.7	1173 ± 2
120	88	68	58	915.7 ± 1.1	1092 ± 1

binary + evolutionary models allow to choose among the possible solutions

 \mathscr{T} computed assuming 1=2

Frequency ratios (Moya et al. 05)

n_{f47} : radial order of f₄₇

ratios up to n=120

n	n	n	n	T	T
48	35	27	23	367.8 ± 0.4	2718 ± 3
60	44	34	29	460.8 ± 0.4	2170 ± 6
83	61	47	40	635.0 ± 1.4	1575 ± 4
85	62	48	41	648.6 ± 1.3	1542 ± 3
96	70	54	46	729.8 ± 2.1	1370 ± 4
97	71	55	47	741.6 ± 1.8	1348 ± 4
108	79	61	52	822.8 ± 1.0	1215 ± 2
109	80	62	53	834.5 ± 2.9	1198 ± 4
112	82	63	54	852.7 ± 1.7	1173 ± 2
120	88	68	58	915.7 ± 1.1	1092 ± 1

binary + evolutionary models allow to choose among the possible solutions

 \mathscr{T} computed assuming 1=2

Comparison with stellar models

fine grid of models around component masses with CLES (Scuflaire+08)

EoS: OPAL05; opacity tables (OPAL) for two solar mixtures: GN93, AGS05

MLT

compositions

7400 no OV or $\alpha_{OV}=1.5, 2.0$ 860 840 7200 820 different chemical (zHn) 800 Leff 7000 BV,2 780 Z Υ 0.27 0.012 760 6800 ▼0.27 0.016 ▲ 0.28 0.012 740 ■ 0.28 0.016 0.28 0.018 720 6600 1.2 1.2 1.1 1.3 1.4 1.5 1.1 1.3 1.4 1.5 age (Gy) age (Gy) 1.2 25 1.0 20 f_{ds} (d⁻¹) f_{gd} (d⁻¹) 80 0.6 10 0.4 5 1.1 1.2 1.4 1.5 1.2 1.3 1.4 1.5 1.3 1.1 age (Gy) age (Gy)

Age determination

Masses, Radii, ΔT_{eff} from the binary model

Brunt-Väisälä Integral, secondary component

Excited Frequencies: δ Sct domain

Computed with the non-adiabatic code MAD (Dupret et al. 2005)

Excited Frequencies: δ Sct domain

Computed with the non-adiabatic code MAD (Dupret et al. 2005)

Excited Frequencies: y Dor domain

secondary only:

excitation mechanisms is not at work in the primary

Excited Frequencies: y Dor domain

secondary only:

excitation mechanisms is not at work in the primary

Conclusions

- EB-SB2 :
- masses, radii (log g), rotation (spin alignment)
- pulsating component
- + models: system age
 > parameter selection

- PULSATIONS:
- orbit effect (FM star)
- partial mode identification
- estimate of BV integral

Conclusions

- EB-SB2 :
- masses, radii (log g), rotation (spin alignment)
- pulsating component
- + models: system age
 > parameter selection

- PULSATIONS:
- orbit effect (FM star)
- partial mode identification

cross validation

estimate of BV integral

Conclusions

- EB-SB2 :
- masses, radii (log g), rotation (spin alignment)
- pulsating component
- + models: system age
 > parameter selection

- PULSATIONS:
- orbit effect (FM star)
- partial mode identification
- cross validation
- estimate of BV integral

Consistent and detailed model: the results are worth the more complex analysis

In collaboration with:

• H. Lehmann, TLS, Tautenburg, Germany R. Da Silva, Univ. Tor Vergata, Rome, Italy free-lance, Liege, Belgium J. Montalbán, • · C-U Lee, KASSI, Daejeon, Korea • H. Ak, Erciyes Univ., Kayseri, Turkey • R. Deshpande Pennsylvania State University, (USA) • K. Yakut Ege University, Izmir, Turkey J. Desbosscher Instituut for Sterrenkunde, K.U.L., Belgium • Z. Guo CHARA, Atlanta (USA) • S.L. Kim KASSI, Daejeon, Korea J.W. Lee KASSI, Daejeon, Korea • J. Southworth Keele University, Keele, UK

for the full story: A&A 563, A59 (2014)

A&A 563, A59 (2014) DOI: 10.1051/0004-6361/201322871 © ESO 2014 Astronomy Astrophysics

KIC 3858884: a hybrid δ Scuti pulsator in a highly eccentric eclipsing binary^{*,**,***}

C. Maceroni¹, H. Lehmann², R. da Silva¹, J. Montalbán³, C.-U. Lee⁴, H. Ak^{5,6}, R. Deshpande^{6,7}, K. Yakut⁸, J. Debosscher⁹, Z. Guo¹⁰, S.-L. Kim⁴, J. W. Lee⁴, and J. Southworth¹¹

- ¹ INAF Osservatorio astronomico di Roma, via Frascati 33, 00040 Monteporzio C., Italy e-mail: maceroni@oa-roma.inaf.it
- ² Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany
- ³ Institut d'Astrophysique et Géophysique Université de Liège, Allée du 6 Aôut, 4000 Liège, Belgium
- ⁴ Korea Astronomy and Space Science Institute, 305-348 Daejeon, Korea
- ⁵ Erciyes University, Science Faculty, Astronomy and Space Sci. Dept., 38039 Kayseri, Turkey
- ⁶ Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA
- ⁷ Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA 16802, USA
- ⁸ Department of Astronomy & Space Sciences, University of Ege, 35100 İzmir, Turkey
- ⁹ Instituut for Sterrenkunde, K.U. Leuven, Celestijnenlaan 200 D, 3001 Leuven, Belgium
- ¹⁰ Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, PO Box 5060, Atlanta GA 30302-5060, USA
- ¹¹ Astrophysics Group, Keele University, Staffordshire ST5 5BG, UK

Thanks to the CoRoT and Kepler Science teams for making the photometry revolution possible

> ...and thank you for your attention

KIC 3858884 on the HRD

