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Eclipsing binaries and space missions

Study of eclipsing binaries is a mature field
Eclipses proposed for § Persei by John Goodricke in 1783
Stebbins (1911ApJ....34..112S): first measurement of mass and radius

High-quality space photometry era started in 2006
— ¢ Centauri: V =4.0 Bruntt et al. (2006A+A...456..651B)
— [ Aurigae:  V =19 Southworth et al. (2007A+A...467.1215S)
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Eclipsing binaries and space missions

Study of eclipsing binaries is a mature field
Eclipses proposed for [ Persei by John Goodricke in 1783
Stebbins (1911ApJ....34..112S): first measurement of mass and radius

High-quality space photometry era started in 2006
— ¢ Centauri: V =4.0 Bruntt et al. (2006A+A...456..651B)
— [ Aurigae: V' =1.9 Southworth et al. (2007A+A...467.1215S)

2005: CoRoT
2009: Kepler

— Any search for transiting ‘ :
planets will get eclipsing g
binaries too a

— CoRoT and Kepler did
this on a large scale

— Need large-scale response
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The importance of eclipsing binaries
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The importance of eclipsing binaries

e Light curve analysis gives: % % inclination /  ecosw

WW Aurigae (Southworth et al., 2005MNRAS.363..529S)
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The importance of eclipsing binaries

e Light curve analysis gives: B R pclination i ecosw
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The importance of eclipsing binaries

e Light curve analysis gives: B R inclination i ecosw
a a

e Radial velocity analysis gives:  Mysin®i  Msin®i  asini  esinw
o Combine: masses to 1% radii to 1% logg to 0.01dex
e Add in Teg: luminosity to 0.04dex distance to 2%
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The importance of eclipsing binaries

R Ry

e Light curve analysis gives: =} =2 inclination / ecosw
e Radial velocity analysis gives:  Mysin®i  Msin®i  asini  esinw
o Combine: masses to 1% radii to 1% logg to 0.01dex

Add in Teg: luminosity to 0.04dex  distance to 2%

e Abundance analysis using the spectra and known log g

WW Aurigae (Southworth et al., 2005MNRAS.363..529S)



Uses of eclipsing systems

e Test theoretical stellar models
(e.g. Pols et al., 1997MNRAS.289..869P)

e Apsidal-motion test of stellar structure
(e.g. Claret 2007A+A...475.1019C)

e Test model atmospheres via limb darkening
(see Howarth, 2011MNRAS.418.1165H)
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3.13 £ 0.24 M,

M2 = 7 779 £ 0.095 Mg, .
Figure taken from Pavlovski
et al. (2009MNRAS.400..791P).
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Uses of eclipsing systems

Test theoretical stellar models
(e.g. Pols et al., 1997MNRAS.289..869P)

Apsidal-motion test of stellar structure
(e.g. Claret 2007A+A...475.1019C)

Test model atmospheres via limb darkening
(see Howarth, 2011MNRAS.418.1165H)
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(e.g. Southworth, 2000MNRAS.394..272S)

Star and binary star formation scenarios
(e.g. Albrecht et al., 2009Natur.461..373A) : " =

Effective temperature [K]

Investigate the chemical enrichment law

H © ts of V380 C
(Ribas et al., 2000MNRAS.313...99R) georets of Vs i

0 0 . . My = 7.779 4 0.095 M .
Direct distance indicators Figure taken from Pavlovski
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Red giants in EBs

o KICB8410637 (Hekker et al.,
2010ApJ...713L.187H)

— Pulsating red giant in EB
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Red giants in EBs

KIC8410637 (Hekker et al.,
2010ApJ...713L.187H)

— Pulsating red giant in EB

Follow-up study (Frandsen et
al., 2013A+A...556A.138F)
— 408 day eccentric orbit
— Masses and radii to 1-2%
— Pulsation analysis ongoing

Gaulme et al. (2013ApJ...767...82G): twelve more similar systems

Gaulme et al. (2014ApJ...785....5G): giants in shorter-period EBs do not
show stochastic oscillations



Tidally-induced pulsations

KIC8410637 (Hekker et al.,
2010ApJ...713L.187H)

— Pulsating red giant in EB
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— 408 day eccentric orbit
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Gaulme et al. (2013ApJ...767
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HD 174884 eclipsing binary (Maceroni et al. 2009A+A...508.1375M)
— 27d of CoRoT show deep primary and shallow secondary eclipse




Tidally-induced pulsations

KIC8410637 (Hekker et al.,
2010ApJ...713L.187H)

— Pulsating red giant in EB

Follow-up study (Frandsen et
al., 2013A+A...556A.138F)

— 408 day eccentric orbit
— Masses and radii to 1-2%
— Pulsation analysis ongoing

Gaulme et al. (2013ApJ...767 7
Gaulme et al. (2014ApJ...785 ' _ Phase
HD 174884 eclipsing binary (Maceroni et al. 2009A+A...508.1375M)

— 27d of CoRoT show deep primary and shallow secondary eclipse
— Tidally induced pulsations at 2, 3, 4, 8 and 13 fop




Very low mass stars in EBs

e KOI-126 (Carter et al.
2011Sci...331..562C)
— Triply eclipsing G star
with two 0.2 Mg stars
— Periods: 33.9d, 1.8d

— Masses to 1%,
radii to 0.5%
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Time~T, [8JD]




Very low mass stars in EBs

e KOI-126 (Carter et al.
2011Sci...331..562C)
— Triply eclipsing G star
with two 0.2 M, stars
— Periods: 33.9d, 1.8d
— Masses to 1%,
radii to 0.5%
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e Model discrepancy: low-
mass stars are bigger than
theoretical models predict
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— Probable cause: tidal

effects cause magnetic

activity 02 03 04 05
Mass (Ms,,)

— Solution: study long-
period EBs



Pre-main-sequence stars in EBs
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e CoRoT 223992193 (Gillen et al. 2014A+A...562A..50G)
— Member of open cluster NGC 2264
— Observed by CoRoT in 2008 and 2011/12



Pre-main-sequence stars in EBs
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e CoRoT 223992193 (Gillen et al. 2014A+A...562A..50G)
— Member of open cluster NGC 2264
— Observed by CoRoT in 2008 and 2011/12

e See talk by Ed Gillen
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0 Scuti stars in EBs

e KIC10661783 (Southworth et

al. 2011MNRAS.414.2413S) s ,\“m ;. M
. | ) 5‘5 ”q ,~" e’f‘ )

— Semi-detached EB with
total eclipses

— 55 pulsation frequencies,
most 20-30cd !
e |ehmann et al. 550
(2013A+A...557A..79L)
— Masses and radii to 1%
— Weird: mass ratio requires
it to be a detached binary
e CoRoT 105906206 (Da Silva et
al. 2014A+A...565A..55D)
— Masses and radii to 1-2%

— Doppler beaming needed
to fit light curve

HJD — 40000‘ N




~v Doradus stars in EBs

KIC 11285625 (Debosscher et
al., 2013A+A...556A..56D)

— Masses and radii to 1%

— Pulsations show
amplitude variability
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~v Doradus stars in EBs

e KIC11285625 (Debosscher et
al., 2013A+A...556A..56D)

— Masses and radii to 1%

— Pulsations show
amplitude variability

e CoRoT 102918586 (Maceroni et
al., 2013A+A...552A..60M)

— Masses and radii to 1-2%

— Pulsations consistent with
¢ =1 g-modes

4140 4150 4160 4170 4180 4190
HJD-2450000



Heartbeat stars

o KOI-54 (Welsh et al. 2011ApJS..197....4W)

— 42d period binary with very eccentric orbit (e = 0.83) and no eclipses



Heartbeat stars

e KOI-54 (Welsh et al. 2011ApJS..197....4W)
— 42d period binary with very eccentric orbit (e = 0.83) and no eclipses
— Brightening at periastron due to the reflection and ellipsoidal effects



Heartbeat stars

e KOI-54 (Welsh et al. 2011ApJS..197....4W)
— 42d period binary with very eccentric orbit (e = 0.83) and no eclipses
— Brightening at periastron due to the reflection and ellipsoidal effects
— Many pulsations at orbital harmonics; strongest are 90 and 91 f,,1,



Heartbeat stars

e KOI-54 (Welsh et al. 2011ApJS..197....4W)
— 42d period binary with very eccentric orbit (e = 0.83) and no eclipses
— Brightening at periastron due to the reflection and ellipsoidal effects

— Many pulsations at orbital harmonics; strongest are 90 and 91 f,,1,

e See talk by Kelly Hambleton



Stochastic oscillations in EBs

e V380 Cygni = KIC5385723
(Tkachenko et al. 2014MNRAS.438.3093T)

— Well-known 12.4d eccentric EB
— Spectral type: B1.5II-lIl + B2V
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Stochastic oscillations in EBs

e V380 Cygni = KIC5385723
(Tkachenko et al. 2014MNRAS.438.3093T)
— Well-known 12.4d eccentric EB
— Spectral type: B1.5II-IIl + B2V

— Granulation signal detected in Kepler
data after removing binarity effects o I

Granulation
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Stochastic oscillations in EBs

e V380 Cygni = KIC5385723
(Tkachenko et al. 2014MNRAS.438.3093T)

— Well-known 12.4d eccentric EB
— Spectral type: B1.5II-IIl + B2V

— Granulation signal detected in Kepler
data after removing binarity effects

e Late-type dwarfs are more problematic
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Circumbinary planets

e 8 known transiting circumbinary planets, all orbiting EBs
Kepler-16 first, then Kepler- 34, 35, 38, 47b, 47c, 64, 413
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Circumbinary planets

e 38 known transiting circumbinary planets, all orbiting EBs
— Kepler-16 first, then Kepler- 34, 35, 38, 47b, 47c, 64, 413
— Eclipse timing variations give additional constraints

— Exquisite measurements of masses and radii of the host stars
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Interacting binaries

e V344 Lyrae (Still et al., 2010ApJ...717L.113S)

— Outbursting cataclysmic variable

EXAMPLE: V344 LYR (DWARF NOVA)
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Interacting binaries

e V344 Lyrae (Still et al., 2010ApJ...717L.113S)
— Outbursting cataclysmic variable

e V477 Lyrae (Ramsay et al., 2012MNRAS.425.1479R)
— Eclipsing cataclysmic variable
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Interacting binaries

e V344 Lyrae (Still et al.)
— Outbursting CV

e V477 Lyrae (Ramsay et al.)
— Eclipsing CV
e AU Mon (Desmet et al.,
2010MNRAS.401..418D)
— Be + G-type semi-
detached binary

— CoRoT light curve
shows fast oscillations
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Interacting binaries

V344 Lyrae (Still et al.)
— Outbursting CV

VATT7 Lyrae (Ramsay et al.)
— Eclipsing CV
AU Mon (Desmet et al.,
2010MNRAS.401..418D)
— Be + G-type semi-
detached binary
— CoRoT light curve
shows fast oscillations
KPD 1946+4340 (Bloemen et al.,
2011MNRAS.410.1787B)
— Eclipsing sdB + WD binary
— Doppler beaming and
gravitational lensing
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— Kepler EB catalogue contains 2640 objects 55
— CoRoT obtained >163000 light curves
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Near future

o Continue to exploit Kepler and CoRoT data

— Kepler EB catalogue contains 2640 objects &8
— CoRoT obtained >163000 light curves

Kepler K2 mission now funded

BRITE is launched and operational
TESS will launch in 2017 and observe for 2 yr

GAIA is launched and data come soon

— Trigonometric distances to 10° stars
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— Much better than Kepler or CoRoT
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PLATO

e Expect 5000-10000 EBs (depends on strategy)
— Bright stars and 25s observing cadence
— Much better than Kepler or CoRoT

e | run the eclipsing binary work packages

— Need to prepare: PLATO is only 10 years away
— Contact me:
astro. js@keele.ac.uk
o Likely science areas:
— massive stars
— low-mass stars

— pulsations in EBs

— calibration of
asteroseismology

— distance scale
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