Tidal dissipation in stars and planetary fluid layers

S. Mathis, P. Auclair-Desrotour, M. Guenel, C. Le Poncin-Lafitte

General context

The space photometry revolution: the discovery of new planetary systems and the characterisation of their host stars

CoRoT

Kepler – K2 CHEOPS & TESS

PLATO

Stellar and planetary rotation history

Orbital architecture

Albrecht et al. 2012; Gizon et al. 2013; <u>Talks C. Damiani & T. Mazey</u>

\rightarrow Need to understand angular momentum exchanges within star-planet systems \rightarrow TIDES

The Space Photometry Revolution 10

10/07/2014

Tidal dissipation

Tidal waves in stars and fluid planetary layers

- Convective layers: turbulent friction & thermal diffusion
- Stable layers: thermal diffusion

A resonant erratic tidal dissipation spectrum

The Space Photometry Revolution

10/07/2014

The impact of tidal dissipation on the spin dynamics and on systems orbital architecture

The coplanar two-bodies system:

The impact of tidal dissipation: the case of rocky bodies

An example: the Mars-Phobos system

Regular evolution

The impact of tidal dissipation: the case of fluid bodies

An example: a fully convective body of the mass of Mars-Phobos system

A reduced local model to understand tidal dissipation in fluids

Ogilvie & Lin 2004

Auclair-Desrotour, Le Poncin-Lafitte, Mathis 2014b

- Cartesian geometry
- Rotating and inclined
- Possible stable stratification
- Viscous and thermal dissipation

Control parameters:

The complex erratic tidal dissipation spectrum

→ Need to characterize spectra

The Space Photometry Revolution 10/07/2014

An evolving behaviour

Deacrising viscosity / increasing rotation

The four main regimes

A complete characterization

Asymptotic scaling laws

Domain	$A \ll A_{11}$		$A \gg A_{11}$	
$Pr \gg Pr_{11}$	$\omega_{mn} \sim \frac{n}{\sqrt{m^2 + n^2}} \cos \theta$		$\omega_{mn} \sim \frac{m}{\sqrt{m^2 + n^2}} \sqrt{A}$	
11	$l_{mn} \sim E$	$k_c \sim E^{-1/4}$	$l_{mn} \sim E$	$k_c \sim A^{1/8} E^{-1/4}$
	$H_{mn} \sim F^2 E^{-1}$	$N_{ m kc} \sim E^{-1/2}$	$H_{mn} \sim F^2 E^{-1}$	$N_{\rm kc} \sim A^{1/4} E^{-1/2}$
	$H_{\rm bg} \sim F^2 E$	$\Xi \sim E^{-2}$	$H_{\rm bg} \sim F^2 E A^{-1}$	$\Xi \sim A E^{-2}$
$Pr \ll Pr_{11}$	$\omega_{mn} \sim \frac{n}{\sqrt{m^2 + n^2}} \cos \theta$		$\omega_{mn} \sim rac{m}{\sqrt{m^2 + n^2}} \sqrt{A}$	
	$l_{mn} \sim AK$	$k_c \sim A^{-1/4} K^{-1/4}$	$l_{mn} \sim K$	$k_c \sim A^{1/8} K^{-1/4}$
	$H_{mn} \sim F^2 A^{-2} E K^{-2}$	$N_{\rm kc} \sim A^{-1/2} K^{-1/2}$	$H_{mn} \sim F^2 E K^{-2}$	$N_{\rm kc} \sim A^{1/4} K^{-1/2}$
	$H_{ m bg} \sim F^2 E$	$\Xi \sim A^{-2}K^{-2}$	$H_{\rm bg} \sim F^2 E A^{-1}$	$\Xi \sim AK^{-2}$

Asymptotic scaling laws

Domain	$A \ll A_{11}$		$A \gg A_{11}$		
$Pr \gg Pr_{11}$	$\omega_{mn} \sim \frac{n}{\sqrt{m^2 + n^2}} \cos \theta$		$\omega_{mn} \sim \frac{m}{\sqrt{m^2 + n^2}} \sqrt{A} \qquad \qquad$		
	$l_{mn} \sim E$	$K_c \sim E^{-1/2}$	$l_{mn} \sim E$	$K_c \sim A^{1/5} E^{-1/1}$	
	$H_{mn} \sim F^2 E^{-1}$	$N_{\rm kc} \sim E^{-1/2}$	$H_{mn} \sim F^2 E^{-1}$	$N_{\rm kc} \sim A^{1/4} E^{-1/2}$	
	$H_{ m bg} \sim F^2 E$	-1			
$Pr \ll Pr_{11}$		-2 -	a start and		
	$\omega_{mn} \sim \frac{n}{\sqrt{m^2 + n^2}} \cos \theta$	-3 -		$A = 10^{-4}$ $A = 10^{-3}$	
	$l_{mn} \sim AK$	4-11011	-	$A = 10^{-2}$ $A = 10^{-1}$	
	$H_{mn} \sim F^2 A^{-2} E K^{-2}$	80 -5 -	-	$A = 10$ $A = 10^{1}$ $A = 10^{2}$	
		-6 -	- -	$A = 10^3$	
	$H_{\rm bg} \sim F^2 E$	-7	-		
	-8 -8				
		$\log_{10} E$			

Towards global and multi-layer models

Host star (M in M_{\odot})

Planets

Their complex internal structure and rotation impact tidal dissipation \rightarrow Need of an ab-initio physical modeling

Frequency-averaged models

The example of a Saturn-like planet:

 \rightarrow Integrated models needed for gaseous giant (and telluric) planets

 \rightarrow Possibility of frequency-averaged grids as a function of stellar and planetary properties

Guenel, Mathis & Remus 2014

The Space Photometry Revolution10/07/2014

Conclusions & perspectives

• Dependence of the spin/orbital dynamics on the resonant tidal fluid dissipation :

→ width, height, non-resonant background level

• Dependence of the characteristics of these resonances on the physical parameters of the fluid :

 \rightarrow rotation, stratification, viscosity, thermal diffusivity, etc.

• Local model : general method and qualitative results

→ Need of global models (Guenel, Baruteau, Mathis & Rieutord; Ogilvie et al.); need to characterize the case of stratified convection (<u>I. Baraffe's talk</u>)

- Generalization to magnetic stars and planets :
 - → Alfvén waves; new asymptotic behaviors (Mathis, Auclair-Desrotour, Guenel, Le Poncin-Lafitte)

APPENDIX

Tidal dissipation in stars and fluid planetary layers

→ A resonant erratic tidal dissipation spectrum

Ogilvie & Lin 2004: the case of Jupiter See also *Ogilvie & Lin 2007*; *Rieutord & Valdetarro 2010*

• Orbital dynamics

• Dependence on the height $Q_p^{-1}(\omega) = \frac{H_p}{\left[4\left(\sqrt{2}-1\right)\left(\frac{\omega-\omega_p}{l_p}\right)^2+1\right]^2}$

• Dependence on the width $Q_p^{-1}(\omega) = \frac{H_p}{\left[4\left(\sqrt{2}-1\right)\left(\frac{\omega-\omega_p}{l_p}\right)^2+1\right]^2}$

• A local model for a fluid planet

• A local model for a fluid planet

• Equations

Control parameters

• Periodic velocity field =
$$\sum u_{mn}e^{i2\pi(mx+nz)}$$

$$u_{mn} = n \frac{i\tilde{\omega}(nf_{mn} - mh_{mn}) - n\cos\theta g_{mn}}{(m^2 + n^2)\tilde{\omega}^2 - n^2\cos^2\theta - Am^2\frac{\tilde{\omega}}{\tilde{\omega}}} - \text{Inertial part}$$

$$v_{mn} = \frac{n\cos\theta(nf_{mn} - mh_{mn}) + i\left[\left(m^2 + n^2\right)\tilde{\omega} - \frac{Am^2}{\tilde{\omega}}\right]g_{mn}}{(m^2 + n^2)\tilde{\omega}^2 - n^2\cos^2\theta - Am^2\frac{\tilde{\omega}}{\tilde{\omega}}}$$

$$w_{mn} = -m \frac{i\tilde{\omega}(nf_{mn} - mh_{mn}) - n\cos\theta g_{mn}}{(m^2 + n^2)\tilde{\omega}^2 - n^2\cos^2\theta - Am^2\frac{\tilde{\omega}}{\tilde{\omega}}}, \qquad \text{Viscous diffusivity}$$

$$\tilde{\omega} = \omega + iE\left(m^2 + n^2\right)$$

$$\tilde{\omega} = \omega + iR\left(m^2 + n^2\right)$$

Thermal diffusivity

• Energy dissipated by viscous friction

$$D = \int_0^1 \int_0^1 \left\langle -\mathbf{u} \cdot v \nabla^2 \mathbf{u} \right\rangle dx dz$$

$$\zeta = \frac{2\pi}{\Omega} D = 2\pi E \sum_{(m,n)\in\mathbb{Z}^{*2}} \left(m^2 + n^2\right) \left(\left|u_{mn}^2\right| + \left|v_{mn}^2\right| + \left|w_{mn}^2\right|\right)$$

III. How does tidal dissipation depend on the internal physics of the bodies ?

III. How does tidal dissipation depend on the internal physics of the bodies ?

• Positions of the resonances

 $k = \max\{|m|, |n|\}$

III. How does tidal dissipation depend on the internal physics of the bodies ?

III. How does tidal dissipation depend on the internal physics of the bodies ?

III. How does tidal dissipation depend on the internal physics of the bodies ?

III. How does tidal dissipation depend on the internal physics of the bodies ?

Synopsis

- I. Tidal dissipation ?
- II. Tidal gravito-inertial waves ?
- III. Impact of tidal dissipation on the spin/orbital evolution ?
- IV. How does tidal dissipation depend on the internal physics of the bodies ?

IAU Symposium 310 - Complex Planetary Systems 07/07/2014