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1. Introduction and context

2. Forced waves in stars and fluid planetary layers

2.1. The studied set-up

In Ogilvie & Lin (2004), the authors develop a model for inertial
waves that describes the behavior of a fluid box submitted to
tidal perturbations. It yields an analytical expression for viscous
dissipation depending on the fluid properties through the Ekman
number especially. Our model is directly inspired from this one.
Indeed, we consider a local fluid section belonging to a planet
tidally perturbed at a frequency �. The section is a cartesian
fluid box of length L, such as L ⌧ R, where R is the distance
between the box and the planet center. The fluid is newtonian,
of density ⇢ and kinematic viscosity ⌫, like in the article. But we
take into account its thermal di↵usivity  and its stratification
through the buoyancy B and the Brunt-Vaisala frequency N too.
Moreover, the box is inclined relatively to the spin axis of the
body with an angle ✓. Its rotating movement around this axis is
described by the spin vector ⌦ assumed constant.

Fig. 1. Inertial and gravito-inertial waves spectra (figure taken from
MNTM2013).

We use two reference frames ?. The global one RA :
{A,X,Y,Z} rotates with the planet and its natural spherical as-
sociated basis is denoted (

er, e✓, ez). Thus, the box is located at
the spherical coordinates (R, ✓, 0) in this frame. Then, we intro-

duce the frame fixed to the fluid section, R :
n

O, ex, ey, ey
o

whose
vectors are such as : ez = er, ey = �e✓ and ex = e'.

Fig. 2. The fluid box, its reference frame and its position in the planet
relatively to the spin axis.

To assume that the fluid is stably stratified (i.e. non convec-
tive) by gravity allows us to study at the same time inertial waves
and gravito-inertial waves. Inertial waves result from Coriolis
acceleration only, while gravito-inertial waves involve the buoy-
ancy in addition to Coriolis acceleration. These last ones are
characterized by the Brunt-Vaisala frequency N defined as fol-
lows :

N2 = �g
"

d log ⇢
dz

� 1
�

d log P
dz

#

, (1)
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.

Article number, page 3 of 13

Auclair-Desrotour, Mathis, Le Poncin-Lafitte: Understanding tidal dissipation in stars and fluid planetary regions

A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
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and of the pressure p and buoyancy b,
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(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�
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�u2
mn

�

�

� +
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�v2mn

�
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� +
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�w2
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�
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⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
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⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�
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�u2
mn

�
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� +
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�

�v2mn

�

�

� +
�
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�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).
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say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.
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0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
equilibrium,

N2 = �g
⇢

"

d⇢
dz
+
g⇢2

�P

#

. (2)

2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =

⇣

f̃ , g̃, h̃
⌘

and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :

t = 2⌦t̃, x =
x̃
L
, z =

z̃
L
, ! =

�

2⌦
,

f =
f̃

2⌦
, B =

B̃

2⌦
.

(4)

The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,

@u

@t
+ ez ^ u + Ro (

u · r)
u = � 1

2⌦L⇢
rp + NEkr2

u + B + f, (5)

p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
⇢0

⇢
ez, (6)

where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,

Ro =
U

2⌦R
and NEk =

⌫

2⌦L2 . (7)

with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,

@tB + Aw =


2⌦L2r
2B. (9)

We introduce here a new parameter,

A =
✓ N
2⌦

◆2
, (10)

defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.

2.3. Velocity field and dissipation

f is periodical in time and in space. So we write the quantities as
follows :

ux = <
h

u(x, z)e�i!t
i

, uy = <
h

v(x, z)e�i!t
i

,

uz = <
h

w(x, z)e�i!t
i

, p = <
h

 (x, z)e�i!t
i

,

fx = <
h

f (x, z)e�i!t
i

, fy = <
h

g(x, z)e�i!t
i

,

fz = <
h

h(x, z)e�i!t
i

, B = <
h

b(x, z)e�i!t
i

,

(11)

and the spatial functions are expressed as Fourier series,

u =
X

umnei2⇡(mx+nz), v =
X

vmnei2⇡(mx+nz),

w =
X

wmnei2⇡(mx+nz),  =
X

 mnei2⇡(mx+nz),

f =
X

fmnei2⇡(mx+nz), g =
X

gmnei2⇡(mx+nz),

h =
X

hmnei2⇡(mx+nz), b =
X

bmnei2⇡(mx+nz).

(12)

For an easy reading, the index m and n do not appear under
the sums. They implicitly verify (m, n) 2 Z⇤2. Thus, the previous
system becomes :
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:

�i!umn � cos ✓vmn + sin ✓wmn = �im⇤ mn � E
⇣

m2 + n2
⌘

umn
+ fmn

�i!vmn + cos ✓umn = �E
⇣

m2 + n2
⌘

vmn + gmn

�i!wmn � sin ✓umn = �in⇤ mn � E
⇣

m2 + n2
⌘

wmn
+bmn + hmn

mumn + nwmn = 0

�i!bmn + Awmn = K
⇣

m2 + n2
⌘

bmn

(13)

It is parametrized by the co-latitude ✓ and four characteristic
constants :
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number of noticeable resonance peaks. Then, as shown by Table
1 for first modes, Nkc < k2

c . The layer of harmonics k brings pk
new peaks:

pk = 2k � 1 �
X

i|k/ki2N⇤
ki primenumber

pi (41)

Thus, the number of peaks can be computed with the follow-
ing recurrence series:

Nkc =

kc
X

k=1

pk (42)

kc 1 2 3 4 5 6 7 8 9 10
k2

c 1 4 9 16 25 36 49 64 81 100
Nkc 1 3 7 11 19 23 35 43 55 65

Table 1. Numerical comparison between the number of peaks Nkc and
the number of modes k2

c , kc being the rank of the higher harmonics, for
the main resonances (1  k  10).
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Fig. 14. The real number of resonances Nkc and its first order approx-
imation k2

c in function of the rank of the highest harmonics kc for the
main resonances (1  k  10).

3.2. Width of resonances

Similarly to their positions, the widths at mid-height lmn of peaks
are fully determined by the inertial terms of the system. We sup-
pose that ⇠mn, the numerator of Dmn, varies smoothly compared
to its denominator. Then, the width at mid-height is defined by
the relation:

Dmn

 

!mn +
lmn

2

!

=
1
2

Dmn (!mn) , (43)

i.e.

⇠mn

P
 

!mn +
lmn

2

! =
1
2
⇠mn

P (!mn)
. (44)
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Fig. 15. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by viscous di↵usion (E = 10�4 and
K = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).
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Fig. 16. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by thermal di↵usion (K = 10�4 and
E = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).

This means solving the equation:

P
 

!mn +
lmn

2

!

= P (!mn) . (45)

Assuming E ⌧ 1 and K ⌧ 1, we obtain:

lmn =
⇣

m2 + n2
⌘ Am2K +

⇣

2n2 cos2 ✓ + Am2
⌘

E

n2 cos2 ✓ + Am2 . (46)

Looking at the form of this expression, we introduce two crit-
ical numbers,

Amn (✓) =
2n2

m2 cos2 ✓ and Prmn (✓, A) =
A

A + Amn (✓)
, (47)
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3.2. Width of resonances

Similarly to their positions, the widths at mid-height lmn of peaks
are fully determined by the inertial terms of the system. We sup-
pose that ⇠mn, the numerator of Dmn, varies smoothly compared
to its denominator. Then, the width at mid-height is defined by
the relation:
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This means solving the equation:

P
 

!mn +
lmn

2

!

= P (!mn) . (45)

Assuming E ⌧ 1 and K ⌧ 1, we obtain:

lmn =
⇣

m2 + n2
⌘ Am2K +

⇣

2n2 cos2 ✓ + Am2
⌘

E

n2 cos2 ✓ + Am2 . (46)

Looking at the form of this expression, we introduce two crit-
ical numbers,

Amn (✓) =
2n2

m2 cos2 ✓ and Prmn (✓, A) =
A

A + Amn (✓)
, (47)
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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to the quality factor Q used to take into account dissipation
in orbital dynamics (see Efroimsky & Lainey 2007). Thus,
it linearly impacts the evolution of orbital parameters such
as the semi-major axis, denoted a, of a two-body coplanar
system. To a certain extent, the variation of a caused by a
resonance is proportional to the width of this later. In the
following part, we compute an analytical formula of it show-
ing the dependence on the parameters of the fluid box: the
frequencies square ratio A, the Ekman number E and the
dimensionless thermal di↵usivity K. Similarly to the eigenfre-
quencies, the widths at mid-height lmn of peaks are fully deter-
mined by the left-hand side of Eq. 5. We suppose that ⇠mn, the
numerator of ⇣mn in Eq. 29, varies smoothly compared to its de-
nominator dmn (Eq. 30). Then, the width at mid-height is defined
by the relation:

⇣mn

 

!mn +
lmn

2

!

=
1
2
⇣mn (!mn) , (49)

that can also be expressed:

⇠mn

P
 

!mn +
lmn

2

! =
1
2
⇠mn

P (!mn)
. (50)

This means that we solve the equation:

P
 

!mn +
lmn

2

!

= P (!mn) . (51)

In the regime where E ⌧ 1 and K ⌧ 1, we obtain:

lmn =
⇣

m2 + n2
⌘ Am2K +

⇣

2n2 cos2 ✓ + Am2
⌘

E

n2 cos2 ✓ + Am2 . (52)

Looking at the form of this expression, we introduce two critical
numbers proper to the mode (m, n),

Amn (✓) =
2n2

m2 cos2 ✓ and Prmn (✓, A) =
A

A + Amn (✓)
, (53)

which determine asymptotical behaviors. A ⌧ Amn characterises
inertial waves and A � Amn gravito-inertial waves. In the same
way, if Pr ⌧ Prmn, the resonance is dominated by thermal dif-
fusion ; if Pr � Prmn, it is dominated by viscosity. It allows to
identify four distinct regimes, resumed in Fig. 8:

1. A ⌧ Amn and Pr � Prmn, inertial waves dominated by
viscosity;

2. A � Amn and Pr � Prmn, gravito-inertial waves dominated
by viscosity;

3. A ⌧ Amn and Pr ⌧ Prmn, inertial waves dominated by
thermal di↵usion;

4. A � Amn and Pr ⌧ Prmn, gravito-inertial waves dominated
by thermal di↵usion;

Fig. 8. Asymptotical domains. The areas at left (light blue and purple)
correspond to inertial waves, the ones at right (red and green) corre-
spond to gravito-inertial waves. The fluid is dominated by viscosity in
the blue and red areas, it is dominated by thermal di↵usivity in the green
and purple ones.

The formulae of Table 2, deduced from Eq. 52, eloquently
illustrate this point. First, focus on inertial waves. If the
viscous term overpowers the term of heat di↵usion, then we
are in the case studied by Ogilvie & Lin (2004). The width
at mid-height of resonances linearly varies with the Ekman
number. For E = 10�2, peaks are larger than for E = 10�5

(see Fig.3). Else, the width is proportional to K: for a given
A > 0, the resonances would widen with K as they do with
E in the previous case. Now, let us look at gravito-inertial
waves. They behave similarly as inertial waves, linearly
widening with E and K in the regimes defined above. Finally,
note that lmn always depends on only one parameter but in
the case of inertial waves dominated by thermal di↵usion,
for which the square frequencies ratio has also a linear
impact.

Domain A ⌧ Amn A � Amn

Pr � Prmn 2E
⇣

m2 + n2
⌘

E
⇣

m2 + n2
⌘

Pr ⌧ Prmn AK
m2

⇣

m2 + n2
⌘

n2 cos2 ✓
K

⇣

m2 + n2
⌘

Table 2. Asymptotical behaviors of the width at mid-height lmn of the
resonance associated to the doublet (m, n).

Considering the resonances have all the same qualitative be-
havior, we concentrate on the main one, m = n = 1. The plot
of its width l11 after Eq. 52 allows to visualize the tendencies
described before (Fig. 9). In particular, we can notice the
critical zones where regimes change. As regards the critical
Prandlt Pr11 for instance, it is indicated by corners. The case
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Fig. 31. dependence of the number of peaks Nkc on the thermal di↵u-
sivity K for di↵erent values of A (logarithmic scales).

⌅ =
1
2

⇣

2 cos2 +A
⌘ ⇣

A + cos2 ✓
⌘3

⇥

AK +
�

2 cos2 +A
�

E
⇤2 hC1in cos2 ✓ +C1gravA

i . (71)
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Fig. 32. dependence of the sharpness rate ⌅ on the Ekman number E
for di↵erent values of A (logarithmic scales).

Technically, ⌅ corresponds to the sensitivity of the dissipa-
tion to the frequency. High values of this rate point out the ne-
cessity to take this dependence into account. Like kc, ⌅ presents
symmetrical behaviors for gravito-inertial waves (Table 7). Il
is inversely proportional to the square of the di↵usivity, E (for
Pr � Pr11) or K (for Pr ⌧ Pr11), which means that the sensitiv-
ity to the frequency increases quadratically when the di↵usivity
decreases (Fig. 32 and 33). In the same way, ⌅ increases with A
quadratically in the domain A � cos2 ✓. If A ⌧ cos2 ✓, then it is
correlated to the co-latitude ✓.

At the end, note the relation between the highest mode kc,
the number of resonances Nkc and the sharpness rate ⌅,

Nkc ⇠ k2
c ⇠ ⌅

1
4 , (72)

in which the exponent 1/4 depends on the form of the coef-
ficients of the perturbation (here fmn / 1/ |m| n2).
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Fig. 33. dependence of the sharpness rate ⌅ on the thermal di↵usivity
K for di↵erent values of A (logarithmic scales).

Domain A ⌧ A11 A � A11

Pr � Pr11
cos2 ✓

4C1in E2
A

2C1gravE2

Pr ⌧ Pr11
cos6 ✓

C1in A2K2
A

2C1gravK2

Table 7. Asymptotical expressions of the sharpness rate ⌅ characteriz-
ing the spectrum.

4. Discussion

Bilan et comparaison par rapport a ce qui existe

5. Conclusion and perspectives

We have revisited here the physics of gravito-inertial waves
which occur in fluid planetary regions. These waves may be gen-
erated by a tidal perturber. Then, as they dissipate energy through
the mechanism of viscous friction, they determine the quality
factor Q of the orbital dynamics which is still today defined em-
pirically. The local model used for the study is inspired from the
one proposed by Ogilvie & Lin (2004). It provides an analytical
expression of the viscous dissipation which allows to understand
the influences of the fluid parameters on the mechanism. This
article constitutes the first part of a work aiming at characteriz-
ing each of these dependence qualitatively. Thus, we have here
taken into account rotation, stratification and thermal di↵usivity.
A forthcoming study will complete this overview by considering
the e↵ect of a magnetic field in the fluid box.

We have established the properties of the resonances explic-
itly. We identify asymptotical behaviors and show that the po-
sitions, widths, and heights of the peaks depend on their modes
and on the parameters of the system: the latitude, the Ekman
number, the Brunt-Vaisala frequency and the thermal di↵usivity.
Moreover, we deduce from the expression of the dissipation the
level of the resonant background. This one yields an estimation
of the number of resonances which is directly correlated to the
sharpness of the spectrum. So, resonances are fully characterized
by scaling laws in our local model.

The next step will consist in switching from the fluid box to
a completely fluid spherical planet in order to obtain quantitative

Article number, page 13 of 14

A&A proofs: manuscript no. Forced

Domain A ⌧ A11 A � A11

Pr � Pr11 kc ⇠
 

cos2 ✓

4C1in E2

!

1
8 kc ⇠

 

A
2C1gravE2

!

1
8

Pr ⌧ Pr11 kc ⇠
 

cos6 ✓

C1in A2K2

!

1
8 kc ⇠

 

A
2C1gravK2

!

1
8

Table 5. Asymptotical behaviors of the maximal order of noticeable
resonances kc.
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Fig. 28. dependence of the rank of highest peaks kc on the Ekman
number E for di↵erent values of A (logarithmic scales).
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Fig. 29. dependence of the rank of highest peaks kc on the thermal
di↵usivity K for di↵erent values of A (logarithmic scales).

Nkc ⇠

8

>
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>

>

>

>

>

:

1
2

⇣

2 cos2 ✓ + A
⌘



⇣

A + cos2 ✓
⌘3
"2

12 + ⇠ (✓, A, E,K)
�

"2
12

⇥

AK +
�

2 cos2 +A
�

E
⇤2 h

Cin cos2 ✓ +CgravA
i

9

>

>

>

>

>

=

>

>

>

>

>

;

1
4
,

(67)

which is asymptotically equivalent to:

Nkc ⇠
8

>

>

>

<

>

>

>

:

1
2

⇣

2 cos2 ✓ + A
⌘ ⇣

A + cos2 ✓
⌘3

⇥

AK +
�

2 cos2 +A
�

E
⇤2 h

C1in cos2 ✓ +C1gravA
i

9

>

>

>

=

>

>

>

;

1
4
. (68)

Note that Nkc / E�1/2 for flows dominated by viscosity
and the Coriolis acceleration (with the particular perturbation
coe�cients fmn / 1/ |m| n2), as shown by the graph 30. So,
in this case, the number of peaks decreases with the Ekman
number. It corroborates spectra (Fig. 3 to 6).

Domain A ⌧ A11 A � A11

Pr � Pr11 Nkc ⇠
 

cos2 ✓

4C1in E2

!

1
4 Nkc ⇠

 

A
2C1gravE2

!

1
4

Pr ⌧ Pr11 Nkc ⇠
 

cos6 ✓

C1in A2K2

!

1
4 Nkc ⇠

 

A
2C1gravK2

!

1
4

Table 6. Asymptotical behaviors of the number of peaks Nkc.
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Fig. 30. dependence of the number of peaks Nkc on the Ekman number
E for di↵erent values of A (logarithmic scales).

At the end, is seems interesting here to introduce a sharp-
ness rate ⌅ defined as the ratio between the height of the main
resonance and the background level:

⌅ =
H11

Hbg
. (69)

Is is expressed:

⌅ =
1
2

⇣

2 cos2 +A
⌘



⇣

A + cos2 ✓
⌘3
"2

12 + ⇠ (✓, A, E,K)
�

"2
12

⇥

AK +
�

2 cos2 +A
�

E
⇤2 h

Cin cos2 ✓ +CgravA
i , (70)

formula which may be simplified in asymptotical domains:

Article number, page 12 of 14

Auclair-Desrotour, Mathis, Le Poncin-Lafitte: Understanding tidal dissipation in stars and fluid planetary regions

"12 ⇡
p

2 �
p

5p
20

= "in if A ⌧ cos2 ✓, and

"12 ⇡
2
p

2 �
p

5p
20

= "grav if A � cos2 ✓.

(59)

Thus, the relative distance between !11 and !bg belongs

to the interval

h

"in, "grav
i

, "in and "grav being the distances

corresponding to the asymptotical cases A ⌧ cos2 ✓ and

A � cos2 ✓, inertial waves and gravito-inertial waves respec-

tively. Numerically,

"in ⇡ �0.183 and "grav ⇡ 0.132. (60)

From this, we deduce the asymptotical values of Cin and

Cgrav :

C1in = Cin ("in) = 32.87
C1grav = Cgrav

⇣

"grav
⌘

= 93.74. (61)

Using the previous expressions of "12, we observe that the
dependence of the non-resonant background on E is linear only
if:

max
np

A, cos ✓
o

� max {E,K} . (62)

and we obtain the expression of Hbg in each asymptotical
case (Table 4), inertial waves and gravito-inertial waves.

Hbg = 4⇡F2E
C1gravA +C1in cos2 ✓
�

A + cos2 ✓
�2 (63)

Note that the background does not depend on the Prandlt if
we assume the condition 62. Its level is only defined by the ratio
A/ cos2 ✓.

A ⌧ cos2 ✓ A � cos2 ✓

4⇡C1in F2 E
cos2 ✓

4⇡C1gravF2 E
A

Table 4. Asymptotical behaviors of the non-resonant background level
Hbg of the spectrum. A ⌧ cos2 ✓ corresponds to inertial waves and A �
cos2 ✓ to gravito-inertial waves.

Then, to be noticeable in the spectrum, the harmonics have
to match a criterium determined by the asymptotical domains
(Table 5). This criterium corresponds to the inequality:

Hmn > Hbg, (64)

with the heights Hmn defined in the previous subsection.
The characteristic order k introduced before allows to write

the conditions of existence of the peaks. We replace the index m
and n of the height Hmn by k and use the criterium 64. These con-
ditions directly provide the rank kc of the smaller peaks (Table
5):
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Fig. 26. Dependence of the background level on the Ekman number E
for di↵erent values of A, with K = 10�4.
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Fig. 27. Dependence of the background level on the thermal di↵usivity
K for di↵erent values of A, with E = 10�4.
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2 cos2 ✓ + A
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

⇣

A + cos2 ✓
⌘3
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12
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2 cos2 +A
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>
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1
8
,

(65)

formula which can be simplified in asymptotical cases and
under the condition 62:

kc ⇠
8

>

>

>

<

>

>

>

:

1
2

⇣

2 cos2 ✓ + A
⌘ ⇣

A + cos2 ✓
⌘3

⇥

AK +
�

2 cos2 +A
�

E
⇤2 hC1in cos2 ✓ +C1gravA

i

9

>

>

>

=

>

>

>

;

1
8
. (66)

Taking into account resonances beyond this rank does not
change the global shape of the spectrum of dissipation. In fact,
in the situations corresponding to the previous spectrum, there is
no need to go far beyond k ⇠ 10 (Fig. 28 and 29). That is amply
su�cient to model the dissipation realistically.

The formula gives us the number of peaks of a spectrum as a
function of kc. Thus, assuming that Nkc ⇠ k2

c , we deduce Nkc in
the asymptotical domains (Table 6) from the rank of the highest
harmonics (Table 5). Nkc is given by the analytical expression:
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which determine asymptotical behaviors. A ⌧ Amn charac-
terizes inertial waves, A � Amn gravito-inertial waves. In the
same way, if Pr ⌧ Prmn, the resonance is dominated by thermal
di↵usion ; if Pr � Prmn, it is dominated by viscosity (Fig. 17).
The formulae (Table 2) illustrate this point. Note that lmn only
depends on the di↵usivities E and K but in the case of inertial
waves with an important thermal di↵usion. Neither ✓ nor K inter-
venes else. The width at mid-height does not depend on K when
Pr � Prmn. Otherwise, it is not influenced by E. There is an
obvious symmetry between E and K for gravito-inertial waves:
whatever the case considered, the width increases with the di↵u-
sivity, E or K, as shown by the spectra (Fig. 3 to 6). At the end,
we may notice that the inertial peaks are twice wider than the
gravito-inertial ones.

Domain A ⌧ Amn A � Amn

Pr � Prmn 2E
⇣

m2 + n2
⌘

E
⇣

m2 + n2
⌘

Pr ⌧ Prmn AK
m2
⇣

m2 + n2
⌘

n2 cos2 ✓
K
⇣

m2 + n2
⌘

Table 2. Asymptotical behaviors of the width at mid-height lmn of the
resonance associated to the doublet (m, n).

Fig. 17. Asymptotical domains. The areas at left (light blue and purple)
correspond to inertial waves, the ones at right (red and green) corre-
spond to gravito-inertial waves. The fluid is dominated by viscosity in
the blue and red areas, it is dominated by thermal di↵usivity in the green
and purple ones.

Plotting the width of the main resonance, l11, allows us to
visualize the asymptotical tendencies. The corners on Fig. 18
and 19 indicate the transition area defined by A11 and Pr11. Far
from it, l11 depends on one di↵usivity, E or K, only. When A de-
creases, l11 tends to be proportional to E (Fig. 18). On Fig. 19 we
observe the dependence of Pr11 on A (see Eq. 47): for high val-
ues of A, Pr11 ⇡ 1. Fig. 20 and 21 illustrate the accuracy degree

of the analytical formulae. They compare analytical predictions
to numerical results. Notice that the smaller E and K, the better
the analytical scaling laws.
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Fig. 18. dependence of the width at mid-height l11 (main resonance) on
the Ekman number E for di↵erent values of A (logarithmic scales).
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Fig. 19. dependence of the width at mid-height l11 (main resonance) on
the thermal di↵usivity K for di↵erent values of A (logarithmic scales).

3.3. Amplitude of resonances

Consider the energy dissipated per mass unit over a rotation of
the planet (T = 2⇡⌦�1): ⇣T = DT . The height of resonances
depends on the tidal perturbation f. For perturbation coe�cients
of the form

fmn = i
F
|m| n2 , gmn = 0, hmn = 0, (48)

and assuming E ⌧ 1 and K ⌧ 1, we get the height of peaks:

Hmn =
8⇡F2E

m2n2 �m2 + n2�2

⇣

2n2 cos2 ✓ + Am2
⌘ ⇣

n2 cos2 ✓ + Am2
⌘

⇥

Am2K +
�

2n2 cos2 ✓ + Am2� E
⇤2 ,

(49)

where we find the critical numbers Amn and Prmn introduced
in the previous section:
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number of noticeable resonance peaks. Then, as shown by Table
1 for first modes, Nkc < k2

c . The layer of harmonics k brings pk
new peaks:

pk = 2k � 1 �
X

i|k/ki2N⇤
ki primenumber

pi (41)

Thus, the number of peaks can be computed with the follow-
ing recurrence series:

Nkc =

kc
X

k=1

pk (42)

kc 1 2 3 4 5 6 7 8 9 10
k2

c 1 4 9 16 25 36 49 64 81 100
Nkc 1 3 7 11 19 23 35 43 55 65

Table 1. Numerical comparison between the number of peaks Nkc and
the number of modes k2

c , kc being the rank of the higher harmonics, for
the main resonances (1  k  10).
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Fig. 14. The real number of resonances Nkc and its first order approx-
imation k2

c in function of the rank of the highest harmonics kc for the
main resonances (1  k  10).

3.2. Width of resonances

Similarly to their positions, the widths at mid-height lmn of peaks
are fully determined by the inertial terms of the system. We sup-
pose that ⇠mn, the numerator of Dmn, varies smoothly compared
to its denominator. Then, the width at mid-height is defined by
the relation:

Dmn

 

!mn +
lmn

2

!

=
1
2

Dmn (!mn) , (43)

i.e.

⇠mn

P
 

!mn +
lmn

2

! =
1
2
⇠mn

P (!mn)
. (44)

 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

k

t

e = //6 ; A = 25 ; E = 10ï4 ; K = 0

Fig. 15. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by viscous di↵usion (E = 10�4 and
K = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).
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Fig. 16. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by thermal di↵usion (K = 10�4 and
E = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).

This means solving the equation:

P
 

!mn +
lmn

2

!

= P (!mn) . (45)

Assuming E ⌧ 1 and K ⌧ 1, we obtain:

lmn =
⇣

m2 + n2
⌘ Am2K +

⇣

2n2 cos2 ✓ + Am2
⌘

E

n2 cos2 ✓ + Am2 . (46)

Looking at the form of this expression, we introduce two crit-
ical numbers,

Amn (✓) =
2n2

m2 cos2 ✓ and Prmn (✓, A) =
A

A + Amn (✓)
, (47)
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
equilibrium,

N2 = �g
⇢

"

d⇢
dz
+
g⇢2

�P

#

. (2)

2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =

⇣

f̃ , g̃, h̃
⌘

and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :

t = 2⌦t̃, x =
x̃
L
, z =

z̃
L
, ! =

�

2⌦
,

f =
f̃

2⌦
, B =

B̃

2⌦
.

(4)

The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,

@u

@t
+ ez ^ u + Ro (

u · r)
u = � 1

2⌦L⇢
rp + NEkr2

u + B + f, (5)

p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
⇢0

⇢
ez, (6)

where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,

Ro =
U

2⌦R
and NEk =

⌫

2⌦L2 . (7)

with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,

@tB + Aw =


2⌦L2r
2B. (9)

We introduce here a new parameter,

A =
✓ N
2⌦

◆2
, (10)

defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.

2.3. Velocity field and dissipation

f is periodical in time and in space. So we write the quantities as
follows :

ux = <
h

u(x, z)e�i!t
i

, uy = <
h

v(x, z)e�i!t
i

,

uz = <
h

w(x, z)e�i!t
i

, p = <
h

 (x, z)e�i!t
i

,

fx = <
h

f (x, z)e�i!t
i

, fy = <
h

g(x, z)e�i!t
i

,

fz = <
h

h(x, z)e�i!t
i

, B = <
h

b(x, z)e�i!t
i

,

(11)

and the spatial functions are expressed as Fourier series,

u =
X

umnei2⇡(mx+nz), v =
X

vmnei2⇡(mx+nz),

w =
X

wmnei2⇡(mx+nz),  =
X

 mnei2⇡(mx+nz),

f =
X

fmnei2⇡(mx+nz), g =
X

gmnei2⇡(mx+nz),

h =
X

hmnei2⇡(mx+nz), b =
X

bmnei2⇡(mx+nz).

(12)

For an easy reading, the index m and n do not appear under
the sums. They implicitly verify (m, n) 2 Z⇤2. Thus, the previous
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:

�i!umn � cos ✓vmn + sin ✓wmn = �im⇤ mn � E
⇣

m2 + n2
⌘

umn
+ fmn

�i!vmn + cos ✓umn = �E
⇣

m2 + n2
⌘

vmn + gmn

�i!wmn � sin ✓umn = �in⇤ mn � E
⇣

m2 + n2
⌘

wmn
+bmn + hmn

mumn + nwmn = 0

�i!bmn + Awmn = K
⇣

m2 + n2
⌘

bmn

(13)

It is parametrized by the co-latitude ✓ and four characteristic
constants :
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Domain A ⌧ A11 A � A11

Pr � Pr11
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p
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Hbg ⇠ F2E ⌅ ⇠ A�2K�2 Hbg ⇠ F2EA�1 ⌅ ⇠ AK�2

Table 8. Scaling laws of the properties of the energy dissipated for the di↵erent regimes. Top left: Inertial waves dominated by viscosity. Top
right: Gravito-inertial waves dominated by viscosity. Bottom left: Inertial waves dominated by heat di↵usion. Bottom right: Gravito-inertial
waves dominated by heat di↵usion.
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Host star (M in M¤) Planets 

Their complex internal structure and rotation impact tidal dissipation 
à Need of an ab-initio physical modeling 

 

Towards global and multi-layer models 
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Remus, Mathis,  
Zahn & Lainey 

2012 
Ogilvie 2009, 2013 

à  Integrated models needed for gaseous giant (and telluric) planets 
 

à  Possibility of frequency-averaged grids as a function of stellar and planetary properties 
  

Guenel, Mathis & Remus 2014  
17 

Saturn:  
Mc/Mp=0.196 

The Space Photometry Revolution  10/07/2014 

Frequency-averaged models 
The example of a Saturn-like planet: 



•  Dependence of the spin/orbital dynamics on the resonant tidal fluid 
dissipation : 
à width, height, non-resonant background level 

•  Dependence of the characteristics of these resonances on the physical 
parameters of the fluid :  
à  rotation, stratification, viscosity, thermal diffusivity, etc. 

•  Local model : general method and qualitative results 
à Need of global models (Guenel, Baruteau, Mathis & Rieutord; Ogilvie et 
al.); need to characterize the case of stratified convection (I. Baraffe’s talk) 

•  Generalization to magnetic stars and planets : 
à Alfvén waves; new asymptotic behaviors (Mathis, Auclair-Desrotour, 

Guenel, Le Poncin-Lafitte) 
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Spin/orbit Tidal dissipation Internal structure 

Conclusions & perspectives 
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à A resonant erratic tidal dissipation spectrum 

6.4. The Coriolis Effect and the Traditional Approximation

We begin by comparing the results for the uniformly ro-
tating planet in the full model (Figs. 2 and 3) with those
obtained under the no-Coriolis approximation (Figs. 4 and 5).
It is clear that, when the Coriolis force is included, a number
of resonant features are superimposed on the otherwise
smooth variation of the viscous dissipation rate with forcing
frequency. As expected, the resonances are restricted to the
interval !2 " !̂=! " 2 corresponding to the spectrum of in-
ertial waves in the convective region. For Ek ¼ 10!4 the in-
ertial waves show up as two resonant peaks in the dissipation
rate. However, as Ek is reduced further, a host of resonances
come into play. This trend is consistent with the idea that the
spectrum of inertial waves is dense or continuous in the ab-
sence of viscosity, while it consists of a discrete set of damped
modes in the presence of viscosity. When Ek ¼ 10!4, the
discrete nature of the modes is clearly evident, but when
Ek ¼ 10!7, the individual resonances can barely be discerned,
except for the most prominent examples, and a resonant re-
sponse is almost guaranteed for any forcing frequency within

the spectrum of inertial waves. Under the no-Coriolis approx-
imation the convective regions of the planet have no wavelike
response and no dynamical tide is excited. The slow, large-scale
motion associated with the equilibrium tide is damped by vis-
cosity, leading to a dissipation rate that vanishes linearly with
the viscosity.4 The same dependence does not occur in the full
model for frequencies within the spectrum of inertial waves.
This behavior reflects the fact that the characteristic spatial
scale of the tidally forced inertial waves diminishes as the
viscosity is reduced.

The dissipation rate via Hough waves is differently nor-
malized, as a result of the model-dependent prefactor fHough.
If this factor is of the order of 10!4 to 10!3, as may occur
in short-period extrasolar planets, the Hough dissipation
rate could dominate over the viscous dissipation rate. A

Fig. 2.—Tidal dissipation rate by viscosity in a uniformly rotating planet, according to the full model. The dissipation rate is scaled for comparison with eq. (187).
Panels (a), (b), (c), and (d) are for Ekman numbers 10!4, 10!5, 10!6, and 10!7, respectively. The spectrum of inertial waves corresponds to the interval [!2, 2]. The
dotted line in (d) indicates the dissipation rate in Jupiter corresponding to an effective quality factor Qvisc ¼ 105.

4 There is a small additional contribution to the dissipation rate, propor-
tional to the square root of the viscosity, from the Ekman layer produced by
the equilibrium tide on the inner boundary. This contribution can be elimi-
nated by adopting a stress-free inner boundary condition.

TIDAL DISSIPATION IN ROTATING GIANT PLANETS 497No. 1, 2004

Ogilvie & Lin 2004: the case of Jupiter 
See also Ogilvie & Lin 2007; Rieutord & Valdetarro 2010 

Tidal inertial waves 
(Coriolis acceleration) 

Q ≈105
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6.4. The Coriolis Effect and the Traditional Approximation

We begin by comparing the results for the uniformly ro-
tating planet in the full model (Figs. 2 and 3) with those
obtained under the no-Coriolis approximation (Figs. 4 and 5).
It is clear that, when the Coriolis force is included, a number
of resonant features are superimposed on the otherwise
smooth variation of the viscous dissipation rate with forcing
frequency. As expected, the resonances are restricted to the
interval !2 " !̂=! " 2 corresponding to the spectrum of in-
ertial waves in the convective region. For Ek ¼ 10!4 the in-
ertial waves show up as two resonant peaks in the dissipation
rate. However, as Ek is reduced further, a host of resonances
come into play. This trend is consistent with the idea that the
spectrum of inertial waves is dense or continuous in the ab-
sence of viscosity, while it consists of a discrete set of damped
modes in the presence of viscosity. When Ek ¼ 10!4, the
discrete nature of the modes is clearly evident, but when
Ek ¼ 10!7, the individual resonances can barely be discerned,
except for the most prominent examples, and a resonant re-
sponse is almost guaranteed for any forcing frequency within

the spectrum of inertial waves. Under the no-Coriolis approx-
imation the convective regions of the planet have no wavelike
response and no dynamical tide is excited. The slow, large-scale
motion associated with the equilibrium tide is damped by vis-
cosity, leading to a dissipation rate that vanishes linearly with
the viscosity.4 The same dependence does not occur in the full
model for frequencies within the spectrum of inertial waves.
This behavior reflects the fact that the characteristic spatial
scale of the tidally forced inertial waves diminishes as the
viscosity is reduced.

The dissipation rate via Hough waves is differently nor-
malized, as a result of the model-dependent prefactor fHough.
If this factor is of the order of 10!4 to 10!3, as may occur
in short-period extrasolar planets, the Hough dissipation
rate could dominate over the viscous dissipation rate. A

Fig. 2.—Tidal dissipation rate by viscosity in a uniformly rotating planet, according to the full model. The dissipation rate is scaled for comparison with eq. (187).
Panels (a), (b), (c), and (d) are for Ekman numbers 10!4, 10!5, 10!6, and 10!7, respectively. The spectrum of inertial waves corresponds to the interval [!2, 2]. The
dotted line in (d) indicates the dissipation rate in Jupiter corresponding to an effective quality factor Qvisc ¼ 105.

4 There is a small additional contribution to the dissipation rate, propor-
tional to the square root of the viscosity, from the Ekman layer produced by
the equilibrium tide on the inner boundary. This contribution can be elimi-
nated by adopting a stress-free inner boundary condition.
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Fig. 4. Evolution of the tidal dissipation and of the semi-major axis with time for di↵erent values of lp and Hp, the width at half-height and the
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4.3. Scaling law

The resonant properties of the tidal dissipation in fluids (see Fig
2) generate jumps of the value of the semi-major axis a during
the evolution of the system (see Fig. 3). In this framework, the
link between the orbital dynamics and the rheology of the fluid is
the shape of resonances of the viscous dissipation D (see Eq. 6).
A resonance occurs when a term of the sum in Eq. (6) exceeds all
the others. In this section, our goal is therefore to obtain a scaling
law that relates a jump of a to the height, Hp, and to the width
at half-height, lp, of the corresponding single resonant damping
peak (see Fig. 4) defined as

Q�1
p (�) =

Hp
2
6666644

⇣p
2 � 1

⌘  � � �p

lp

!2

+ 1
3
777775

2 , (8)

where �p is the resonant frequency. Then, the dissipation Q�1

was chosen to be the sum of a smooth background denoted Q�1
0

that corresponds to the one studied in §3, and of a resonant one
Q�1

p (Eq. 8), which leads to the following equation for a using
Eq. (4) :

da
dt
= �

3k2R5
AnBMB

MAa4

h
Q�1

0 (�) + Q�1
p (�)

i
sgn(!). (9)

Assuming that the peak influences the system when the con-
dition Q�1

p � Q�1
0 is fullfilled, and that the resulting variation

is rapid compared with the mean evolution, we can derive the
amplitude of the jump,

�a
a
⇡ 2lp

3
qp

2 � 1
⇣
1 + �p

⌘

2
66666664

vt
Hp

Q�1
0

⇣
�p

⌘ � 1

3
77777775

1
2

. (10)

In Fig. 4, we plot the evolution of the semi-major axis for di↵er-
ent values of Hp and lp and the corresponding dissipation. These
graphs illustrate the scaling law (Eq. 10) by showing that the
width of a peak has a greater impact on a than its height. More-
over, the values of �a/a obtained using direct numerical simu-
lations perfectly match those predicted by Eq. (10). Finally, as
�p, Hp, lp are directly related to the value of the Eckman num-
ber E = ⌫/

⇣
2⌦AL2

⌘
(c.f. Ogilvie & Lin 2004), we see how the

orbital dynamics is directly impacted by the fluid rheology and
resonances.

5. Conclusions

We examined the impact of the frequency dependence of tidal
dissipation in solids and fluids on the orbital evolution of a
coplanar two-body system. We showed the strongly di↵erent
evolutions induced by tides in rocks and by tides exerted on
fluid layers where eigenmodes are resonantly excited. A smooth
dependence of the tidal dissipation on the tidal frequency drives
a smooth orbital evolution, while a peaked dissipation induces
an erratic one. In each case, we pointed out the direct impact of
the rheology properties on the dynamics of the system. Finally,
we showed that it is important to take the dependence of the tidal
dissipation on the tidal frequency into account and the important
consequences it may have for the evolution of star-planet(s) and
planet-moon(s) systems in the solar and exoplanetary systems.
In this context, the impact of the frequency dependence of the
tidal torque on resonances will be examined in a forthcoming
work.
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4.3. Scaling law

The resonant properties of the tidal dissipation in fluids (see Fig
2) generate jumps of the value of the semi-major axis a during
the evolution of the system (see Fig. 3). In this framework, the
link between the orbital dynamics and the rheology of the fluid is
the shape of resonances of the viscous dissipation D (see Eq. 6).
A resonance occurs when a term of the sum in Eq. (6) exceeds all
the others. In this section, our goal is therefore to obtain a scaling
law that relates a jump of a to the height, Hp, and to the width
at half-height, lp, of the corresponding single resonant damping
peak (see Fig. 4) defined as
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where �p is the resonant frequency. Then, the dissipation Q�1

was chosen to be the sum of a smooth background denoted Q�1
0

that corresponds to the one studied in §3, and of a resonant one
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p (Eq. 8), which leads to the following equation for a using
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In Fig. 4, we plot the evolution of the semi-major axis for di↵er-
ent values of Hp and lp and the corresponding dissipation. These
graphs illustrate the scaling law (Eq. 10) by showing that the
width of a peak has a greater impact on a than its height. More-
over, the values of �a/a obtained using direct numerical simu-
lations perfectly match those predicted by Eq. (10). Finally, as
�p, Hp, lp are directly related to the value of the Eckman num-
ber E = ⌫/
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2⌦AL2

⌘
(c.f. Ogilvie & Lin 2004), we see how the

orbital dynamics is directly impacted by the fluid rheology and
resonances.

5. Conclusions

We examined the impact of the frequency dependence of tidal
dissipation in solids and fluids on the orbital evolution of a
coplanar two-body system. We showed the strongly di↵erent
evolutions induced by tides in rocks and by tides exerted on
fluid layers where eigenmodes are resonantly excited. A smooth
dependence of the tidal dissipation on the tidal frequency drives
a smooth orbital evolution, while a peaked dissipation induces
an erratic one. In each case, we pointed out the direct impact of
the rheology properties on the dynamics of the system. Finally,
we showed that it is important to take the dependence of the tidal
dissipation on the tidal frequency into account and the important
consequences it may have for the evolution of star-planet(s) and
planet-moon(s) systems in the solar and exoplanetary systems.
In this context, the impact of the frequency dependence of the
tidal torque on resonances will be examined in a forthcoming
work.
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and to the width at half-height, lp, of the corresponding single
resonant damping peak (see Fig. 4) defined as

Q−1p (ω) =
Hp

[

4
(√
2 − 1

)

(

ω−ωp
lp

)2
+ 1
]2 , (8)

where ωp is the resonant frequency. Then, the dissipation Q−1 is
chosen to be the sum of a smooth background denoted Q−10 that
corresponds to the one studied in §3. and of a resonant one Q−1p

(Eq. 8) that leads to the following equation for a using Eq. (4)

da
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= −
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MAa4
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Q−10 (ω) + Q
−1
p (ω)

]

sgn(ω). (9)

Supposing that the peak has an influence on the system when
the condition Q−1p ≥ Q−10 is fullfilled, and that the resulting vari-
ation is rapid compared to the mean evolution, we can derive the
amplitude of the jump
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In Fig. 4, we plot the evolution of the semi-major axis for differ-
ent values of Hp and lp and the corresponding dissipation. These
graphs illustrate the scaling law (Eq. 10) by showing that the
width of a peak has a greater impact on a than its height. More-
over, the values of ∆a/a obtained using direct numerical simu-
lations perfectly match with those predicted by Eq. (10). Finally
asωp, Hp, lp are directly related to the value of the Eckman num-
ber E = ν/

(

2ΩAL2
)

(c.f. Ogilvie & Lin 2004), we see how the
orbital dynamics is directly impacted by the fluid rheology and
resonances.

5. Conclusions
In this work, we examined the impact of the frequency depen-
dence of tidal dissipation in solids and fluids on the orbital
evolution of a coplanar two body system. We show the strong
different evolutions induced by tides in rocks and by tides
exerted on fluid layers where eigenmodes are resonantly ex-
cited. A smooth dependence of the tidal dissipation on the tidal
frequency drives a smooth orbital evolution while a peaked
dissipation induces an erratic one. In each case, we point the
direct impact of the rheology’s properties on the dynamics of
the system. Finally, this work shows how it becomes important
to take the dependence of the tidal dissipation on the tidal
frequency into account and the important consequences it may
have for the evolution of star-planet(s) and planet-moon(s)
systems in the Solar and exoplanetary systems.
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and to the width at half-height, lp, of the corresponding single
resonant damping peak (see Fig. 4) defined as

Q−1p (ω) =
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]2 , (8)

where ωp is the resonant frequency. Then, the dissipation Q−1 is
chosen to be the sum of a smooth background denoted Q−10 that
corresponds to the one studied in §3. and of a resonant one Q−1p

(Eq. 8) that leads to the following equation for a using Eq. (4)
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dt
= −
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Supposing that the peak has an influence on the system when
the condition Q−1p ≥ Q−10 is fullfilled, and that the resulting vari-
ation is rapid compared to the mean evolution, we can derive the
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In Fig. 4, we plot the evolution of the semi-major axis for differ-
ent values of Hp and lp and the corresponding dissipation. These
graphs illustrate the scaling law (Eq. 10) by showing that the
width of a peak has a greater impact on a than its height. More-
over, the values of ∆a/a obtained using direct numerical simu-
lations perfectly match with those predicted by Eq. (10). Finally
asωp, Hp, lp are directly related to the value of the Eckman num-
ber E = ν/

(

2ΩAL2
)

(c.f. Ogilvie & Lin 2004), we see how the
orbital dynamics is directly impacted by the fluid rheology and
resonances.

5. Conclusions
In this work, we examined the impact of the frequency depen-
dence of tidal dissipation in solids and fluids on the orbital
evolution of a coplanar two body system. We show the strong
different evolutions induced by tides in rocks and by tides
exerted on fluid layers where eigenmodes are resonantly ex-
cited. A smooth dependence of the tidal dissipation on the tidal
frequency drives a smooth orbital evolution while a peaked
dissipation induces an erratic one. In each case, we point the
direct impact of the rheology’s properties on the dynamics of
the system. Finally, this work shows how it becomes important
to take the dependence of the tidal dissipation on the tidal
frequency into account and the important consequences it may
have for the evolution of star-planet(s) and planet-moon(s)
systems in the Solar and exoplanetary systems.
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4.3. Scaling law

The resonant properties of the tidal dissipation in fluids (see Fig
2) generate jumps of the value of the semi-major axis a during
the evolution of the system (see Fig. 3). In this framework, the
link between the orbital dynamics and the rheology of the fluid is
the shape of resonances of the viscous dissipation D (see Eq. 6).
A resonance occurs when a term of the sum in Eq. (6) exceeds all
the others. In this section, our goal is therefore to obtain a scaling
law that relates a jump of a to the height, Hp, and to the width
at half-height, lp, of the corresponding single resonant damping
peak (see Fig. 4) defined as

Q�1
p (�) =

Hp
2
6666644

⇣p
2 � 1

⌘  � � �p

lp

!2

+ 1
3
777775

2 , (8)

where �p is the resonant frequency. Then, the dissipation Q�1

was chosen to be the sum of a smooth background denoted Q�1
0

that corresponds to the one studied in §3, and of a resonant one
Q�1

p (Eq. 8), which leads to the following equation for a using
Eq. (4) :

da
dt
= �

3k2R5
AnBMB

MAa4

h
Q�1

0 (�) + Q�1
p (�)

i
sgn(!). (9)

Assuming that the peak influences the system when the con-
dition Q�1

p � Q�1
0 is fullfilled, and that the resulting variation

is rapid compared with the mean evolution, we can derive the
amplitude of the jump,

�a
a
⇡ 2lp

3
qp

2 � 1
⇣
1 + �p

⌘

2
66666664

vt
Hp

Q�1
0

⇣
�p

⌘ � 1

3
77777775

1
2

. (10)

In Fig. 4, we plot the evolution of the semi-major axis for di↵er-
ent values of Hp and lp and the corresponding dissipation. These
graphs illustrate the scaling law (Eq. 10) by showing that the
width of a peak has a greater impact on a than its height. More-
over, the values of �a/a obtained using direct numerical simu-
lations perfectly match those predicted by Eq. (10). Finally, as
�p, Hp, lp are directly related to the value of the Eckman num-
ber E = ⌫/

⇣
2⌦AL2

⌘
(c.f. Ogilvie & Lin 2004), we see how the

orbital dynamics is directly impacted by the fluid rheology and
resonances.

5. Conclusions

We examined the impact of the frequency dependence of tidal
dissipation in solids and fluids on the orbital evolution of a
coplanar two-body system. We showed the strongly di↵erent
evolutions induced by tides in rocks and by tides exerted on
fluid layers where eigenmodes are resonantly excited. A smooth
dependence of the tidal dissipation on the tidal frequency drives
a smooth orbital evolution, while a peaked dissipation induces
an erratic one. In each case, we pointed out the direct impact of
the rheology properties on the dynamics of the system. Finally,
we showed that it is important to take the dependence of the tidal
dissipation on the tidal frequency into account and the important
consequences it may have for the evolution of star-planet(s) and
planet-moon(s) systems in the solar and exoplanetary systems.
In this context, the impact of the frequency dependence of the
tidal torque on resonances will be examined in a forthcoming
work.
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and to the width at half-height, lp, of the corresponding single
resonant damping peak (see Fig. 4) defined as

Q−1p (ω) =
Hp

[

4
(√
2 − 1

)

(

ω−ωp
lp

)2
+ 1
]2 , (8)

where ωp is the resonant frequency. Then, the dissipation Q−1 is
chosen to be the sum of a smooth background denoted Q−10 that
corresponds to the one studied in §3. and of a resonant one Q−1p

(Eq. 8) that leads to the following equation for a using Eq. (4)

da
dt
= −
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MAa4
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p (ω)

]

sgn(ω). (9)

Supposing that the peak has an influence on the system when
the condition Q−1p ≥ Q−10 is fullfilled, and that the resulting vari-
ation is rapid compared to the mean evolution, we can derive the
amplitude of the jump
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In Fig. 4, we plot the evolution of the semi-major axis for differ-
ent values of Hp and lp and the corresponding dissipation. These
graphs illustrate the scaling law (Eq. 10) by showing that the
width of a peak has a greater impact on a than its height. More-
over, the values of ∆a/a obtained using direct numerical simu-
lations perfectly match with those predicted by Eq. (10). Finally
asωp, Hp, lp are directly related to the value of the Eckman num-
ber E = ν/

(

2ΩAL2
)

(c.f. Ogilvie & Lin 2004), we see how the
orbital dynamics is directly impacted by the fluid rheology and
resonances.

5. Conclusions
In this work, we examined the impact of the frequency depen-
dence of tidal dissipation in solids and fluids on the orbital
evolution of a coplanar two body system. We show the strong
different evolutions induced by tides in rocks and by tides
exerted on fluid layers where eigenmodes are resonantly ex-
cited. A smooth dependence of the tidal dissipation on the tidal
frequency drives a smooth orbital evolution while a peaked
dissipation induces an erratic one. In each case, we point the
direct impact of the rheology’s properties on the dynamics of
the system. Finally, this work shows how it becomes important
to take the dependence of the tidal dissipation on the tidal
frequency into account and the important consequences it may
have for the evolution of star-planet(s) and planet-moon(s)
systems in the Solar and exoplanetary systems.
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6.4. The Coriolis Effect and the Traditional Approximation

We begin by comparing the results for the uniformly ro-
tating planet in the full model (Figs. 2 and 3) with those
obtained under the no-Coriolis approximation (Figs. 4 and 5).
It is clear that, when the Coriolis force is included, a number
of resonant features are superimposed on the otherwise
smooth variation of the viscous dissipation rate with forcing
frequency. As expected, the resonances are restricted to the
interval !2 " !̂=! " 2 corresponding to the spectrum of in-
ertial waves in the convective region. For Ek ¼ 10!4 the in-
ertial waves show up as two resonant peaks in the dissipation
rate. However, as Ek is reduced further, a host of resonances
come into play. This trend is consistent with the idea that the
spectrum of inertial waves is dense or continuous in the ab-
sence of viscosity, while it consists of a discrete set of damped
modes in the presence of viscosity. When Ek ¼ 10!4, the
discrete nature of the modes is clearly evident, but when
Ek ¼ 10!7, the individual resonances can barely be discerned,
except for the most prominent examples, and a resonant re-
sponse is almost guaranteed for any forcing frequency within

the spectrum of inertial waves. Under the no-Coriolis approx-
imation the convective regions of the planet have no wavelike
response and no dynamical tide is excited. The slow, large-scale
motion associated with the equilibrium tide is damped by vis-
cosity, leading to a dissipation rate that vanishes linearly with
the viscosity.4 The same dependence does not occur in the full
model for frequencies within the spectrum of inertial waves.
This behavior reflects the fact that the characteristic spatial
scale of the tidally forced inertial waves diminishes as the
viscosity is reduced.

The dissipation rate via Hough waves is differently nor-
malized, as a result of the model-dependent prefactor fHough.
If this factor is of the order of 10!4 to 10!3, as may occur
in short-period extrasolar planets, the Hough dissipation
rate could dominate over the viscous dissipation rate. A

Fig. 2.—Tidal dissipation rate by viscosity in a uniformly rotating planet, according to the full model. The dissipation rate is scaled for comparison with eq. (187).
Panels (a), (b), (c), and (d) are for Ekman numbers 10!4, 10!5, 10!6, and 10!7, respectively. The spectrum of inertial waves corresponds to the interval [!2, 2]. The
dotted line in (d) indicates the dissipation rate in Jupiter corresponding to an effective quality factor Qvisc ¼ 105.

4 There is a small additional contribution to the dissipation rate, propor-
tional to the square root of the viscosity, from the Ekman layer produced by
the equilibrium tide on the inner boundary. This contribution can be elimi-
nated by adopting a stress-free inner boundary condition.
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
equilibrium,

N2 = �g
⇢

"

d⇢
dz
+
g⇢2

�P

#

. (2)

2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =

⇣

f̃ , g̃, h̃
⌘

and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :

t = 2⌦t̃, x =
x̃
L
, z =

z̃
L
, ! =

�

2⌦
,

f =
f̃

2⌦
, B =

B̃

2⌦
.

(4)

The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,

@u

@t
+ ez ^ u + Ro (

u · r)
u = � 1

2⌦L⇢
rp + NEkr2

u + B + f, (5)

p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
⇢0

⇢
ez, (6)

where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,

Ro =
U

2⌦R
and NEk =

⌫

2⌦L2 . (7)

with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,

@tB + Aw =


2⌦L2r
2B. (9)

We introduce here a new parameter,

A =
✓ N
2⌦

◆2
, (10)

defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.

2.3. Velocity field and dissipation

f is periodical in time and in space. So we write the quantities as
follows :

ux = <
h

u(x, z)e�i!t
i

, uy = <
h

v(x, z)e�i!t
i

,

uz = <
h

w(x, z)e�i!t
i

, p = <
h

 (x, z)e�i!t
i

,

fx = <
h

f (x, z)e�i!t
i

, fy = <
h

g(x, z)e�i!t
i

,

fz = <
h

h(x, z)e�i!t
i

, B = <
h

b(x, z)e�i!t
i

,

(11)

and the spatial functions are expressed as Fourier series,

u =
X

umnei2⇡(mx+nz), v =
X

vmnei2⇡(mx+nz),

w =
X

wmnei2⇡(mx+nz),  =
X

 mnei2⇡(mx+nz),

f =
X

fmnei2⇡(mx+nz), g =
X

gmnei2⇡(mx+nz),

h =
X

hmnei2⇡(mx+nz), b =
X

bmnei2⇡(mx+nz).

(12)

For an easy reading, the index m and n do not appear under
the sums. They implicitly verify (m, n) 2 Z⇤2. Thus, the previous
system becomes :
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⌘

umn
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�i!vmn + cos ✓umn = �E
⇣

m2 + n2
⌘

vmn + gmn

�i!wmn � sin ✓umn = �in⇤ mn � E
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m2 + n2
⌘

wmn
+bmn + hmn

mumn + nwmn = 0

�i!bmn + Awmn = K
⇣

m2 + n2
⌘

bmn

(13)

It is parametrized by the co-latitude ✓ and four characteristic
constants :
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g is smaller than f and h. From now on, in order to highlight the
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The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.
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follows :
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where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,
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with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :
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At the end, our system is closed by the heat equation,
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
equilibrium,

N2 = �g
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dz
+
g⇢2
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. (2)

2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =

⇣

f̃ , g̃, h̃
⌘

and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :

t = 2⌦t̃, x =
x̃
L
, z =

z̃
L
, ! =

�

2⌦
,

f =
f̃

2⌦
, B =
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2⌦
.

(4)

The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,

@u

@t
+ ez ^ u + Ro (

u · r)
u = � 1

2⌦L⇢
rp + NEkr2

u + B + f, (5)

p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
⇢0

⇢
ez, (6)

where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,

Ro =
U

2⌦R
and NEk =

⌫

2⌦L2 . (7)

with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,

@tB + Aw =


2⌦L2r
2B. (9)

We introduce here a new parameter,

A =
✓ N
2⌦

◆2
, (10)

defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.

2.3. Velocity field and dissipation

f is periodical in time and in space. So we write the quantities as
follows :

ux = <
h
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,

fz = <
h

h(x, z)e�i!t
i
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,
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and the spatial functions are expressed as Fourier series,

u =
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For an easy reading, the index m and n do not appear under
the sums. They implicitly verify (m, n) 2 Z⇤2. Thus, the previous
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
equilibrium,
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+
g⇢2

�P

#

. (2)

2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =

⇣

f̃ , g̃, h̃
⌘

and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :

t = 2⌦t̃, x =
x̃
L
, z =

z̃
L
, ! =
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2⌦
,

f =
f̃
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, B =
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.

(4)

The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,

@u

@t
+ ez ^ u + Ro (

u · r)
u = � 1

2⌦L⇢
rp + NEkr2

u + B + f, (5)

p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
⇢0

⇢
ez, (6)

where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,

Ro =
U

2⌦R
and NEk =

⌫

2⌦L2 . (7)

with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,

@tB + Aw =


2⌦L2r
2B. (9)

We introduce here a new parameter,

A =
✓ N
2⌦

◆2
, (10)

defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.

2.3. Velocity field and dissipation

f is periodical in time and in space. So we write the quantities as
follows :
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and the spatial functions are expressed as Fourier series,
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
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+
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2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =
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f̃ , g̃, h̃
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and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :
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The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,
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+ ez ^ u + Ro (

u · r)
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p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
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where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,
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with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,
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We introduce here a new parameter,
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defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.
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u =
X

umnei2⇡(mx+nz), v =
X

vmnei2⇡(mx+nz),

w =
X

wmnei2⇡(mx+nz),  =
X

 mnei2⇡(mx+nz),

f =
X

fmnei2⇡(mx+nz), g =
X

gmnei2⇡(mx+nz),

h =
X

hmnei2⇡(mx+nz), b =
X

bmnei2⇡(mx+nz).

(12)

For an easy reading, the index m and n do not appear under
the sums. They implicitly verify (m, n) 2 Z⇤2. Thus, the previous
system becomes :
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:

�i!umn � cos ✓vmn + sin ✓wmn = �im⇤ mn � E
⇣

m2 + n2
⌘

umn
+ fmn

�i!vmn + cos ✓umn = �E
⇣

m2 + n2
⌘

vmn + gmn

�i!wmn � sin ✓umn = �in⇤ mn � E
⇣

m2 + n2
⌘

wmn
+bmn + hmn

mumn + nwmn = 0

�i!bmn + Awmn = K
⇣

m2 + n2
⌘

bmn

(13)

It is parametrized by the co-latitude ✓ and four characteristic
constants :
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
equilibrium,

N2 = �g
⇢

"

d⇢
dz
+
g⇢2

�P

#

. (2)

2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =

⇣

f̃ , g̃, h̃
⌘

and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :

t = 2⌦t̃, x =
x̃
L
, z =

z̃
L
, ! =

�

2⌦
,

f =
f̃

2⌦
, B =

B̃

2⌦
.

(4)

The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,

@u

@t
+ ez ^ u + Ro (

u · r)
u = � 1

2⌦L⇢
rp + NEkr2

u + B + f, (5)

p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
⇢0

⇢
ez, (6)

where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,

Ro =
U

2⌦R
and NEk =

⌫

2⌦L2 . (7)

with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,

@tB + Aw =


2⌦L2r
2B. (9)

We introduce here a new parameter,

A =
✓ N
2⌦

◆2
, (10)

defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.

2.3. Velocity field and dissipation

f is periodical in time and in space. So we write the quantities as
follows :

ux = <
h

u(x, z)e�i!t
i

, uy = <
h

v(x, z)e�i!t
i

,

uz = <
h

w(x, z)e�i!t
i

, p = <
h

 (x, z)e�i!t
i

,

fx = <
h

f (x, z)e�i!t
i

, fy = <
h

g(x, z)e�i!t
i

,

fz = <
h

h(x, z)e�i!t
i

, B = <
h

b(x, z)e�i!t
i

,

(11)

and the spatial functions are expressed as Fourier series,

u =
X

umnei2⇡(mx+nz), v =
X

vmnei2⇡(mx+nz),

w =
X

wmnei2⇡(mx+nz),  =
X

 mnei2⇡(mx+nz),

f =
X

fmnei2⇡(mx+nz), g =
X

gmnei2⇡(mx+nz),

h =
X

hmnei2⇡(mx+nz), b =
X

bmnei2⇡(mx+nz).

(12)

For an easy reading, the index m and n do not appear under
the sums. They implicitly verify (m, n) 2 Z⇤2. Thus, the previous
system becomes :
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:

�i!umn � cos ✓vmn + sin ✓wmn = �im⇤ mn � E
⇣

m2 + n2
⌘

umn
+ fmn

�i!vmn + cos ✓umn = �E
⇣

m2 + n2
⌘

vmn + gmn

�i!wmn � sin ✓umn = �in⇤ mn � E
⇣

m2 + n2
⌘

wmn
+bmn + hmn

mumn + nwmn = 0

�i!bmn + Awmn = K
⇣

m2 + n2
⌘

bmn

(13)

It is parametrized by the co-latitude ✓ and four characteristic
constants :
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
equilibrium,

N2 = �g
⇢

"

d⇢
dz
+
g⇢2

�P

#

. (2)

2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =

⇣

f̃ , g̃, h̃
⌘

and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :

t = 2⌦t̃, x =
x̃
L
, z =

z̃
L
, ! =

�

2⌦
,

f =
f̃

2⌦
, B =

B̃

2⌦
.

(4)

The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,

@u

@t
+ ez ^ u + Ro (

u · r)
u = � 1

2⌦L⇢
rp + NEkr2

u + B + f, (5)

p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
⇢0

⇢
ez, (6)

where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,

Ro =
U

2⌦R
and NEk =

⌫

2⌦L2 . (7)

with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,

@tB + Aw =


2⌦L2r
2B. (9)

We introduce here a new parameter,

A =
✓ N
2⌦

◆2
, (10)

defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.

2.3. Velocity field and dissipation

f is periodical in time and in space. So we write the quantities as
follows :

ux = <
h

u(x, z)e�i!t
i

, uy = <
h

v(x, z)e�i!t
i

,

uz = <
h

w(x, z)e�i!t
i

, p = <
h

 (x, z)e�i!t
i

,

fx = <
h

f (x, z)e�i!t
i

, fy = <
h

g(x, z)e�i!t
i

,

fz = <
h

h(x, z)e�i!t
i

, B = <
h

b(x, z)e�i!t
i

,

(11)

and the spatial functions are expressed as Fourier series,

u =
X

umnei2⇡(mx+nz), v =
X

vmnei2⇡(mx+nz),

w =
X

wmnei2⇡(mx+nz),  =
X

 mnei2⇡(mx+nz),

f =
X

fmnei2⇡(mx+nz), g =
X

gmnei2⇡(mx+nz),

h =
X

hmnei2⇡(mx+nz), b =
X

bmnei2⇡(mx+nz).

(12)

For an easy reading, the index m and n do not appear under
the sums. They implicitly verify (m, n) 2 Z⇤2. Thus, the previous
system becomes :
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:

�i!umn � cos ✓vmn + sin ✓wmn = �im⇤ mn � E
⇣

m2 + n2
⌘

umn
+ fmn

�i!vmn + cos ✓umn = �E
⇣

m2 + n2
⌘

vmn + gmn

�i!wmn � sin ✓umn = �in⇤ mn � E
⇣

m2 + n2
⌘

wmn
+bmn + hmn

mumn + nwmn = 0

�i!bmn + Awmn = K
⇣

m2 + n2
⌘

bmn

(13)

It is parametrized by the co-latitude ✓ and four characteristic
constants :
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3

7

7

7

7

7

7

7

7

7

7

7

5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2

6

6

6

6

6

6

6

6

6

6

6

4

(!̃ fmn + i cos ✓gmn)


n sin ✓ + im
✓ A
!̂
� !̃

◆�

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

�
hmn

h

m sin ✓!̃ + in
⇣

!̃2 � cos2 ✓
⌘i

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

3
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7
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7
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5

,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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:

umn = n
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

vmn =

n cos ✓ (n fmn � mhmn) + i
"

⇣

m2 + n2
⌘

!̃ � Am2

!̂

#

gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

wmn = �m
i!̃ (n fmn � mhmn) � n cos ✓gmn

�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

,

(19)
and of the pressure p and buoyancy b,

 mn =
1
⇤

2
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6
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6

6

4

(!̃ fmn + i cos ✓gmn)
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n sin ✓ + im
✓ A
!̂
� !̃

◆�

�
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�
hmn
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,

(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2

X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2

⇣

m2 + n2
⌘ ⇣

�

�

�u2
mn

�

�

� +
�

�

�v2mn

�

�

� +
�

�

�w2
mn

�

�

�

⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.

Article number, page 3 of 13

Auclair-Desrotour, Mathis, Le Poncin-Lafitte: Understanding tidal dissipation in stars and fluid planetary regions

A =
✓ N
2⌦

◆2
, E =

2⇡2⌫

⌦L2 , K =
2⇡2

⌦L2 and ⇤ =
⇡

⌦⇢L
.

(14)
E and K are both dimensionless di↵usivities. E is propor-

tional to the Ekman number of the fluid and K stands for the
thermal di↵usivity compared to inertial e↵ects. Finally,⇤weight
the pressure variations. This parameter will not intervene in the
expressions of the velocity field. Therefore, viscous dissipation
does not depend on it. In addition, we introduce the Prandlt num-
ber of the fluid,

Pr =
⌫


=

E
K
, (15)

which measures the relative influence of viscosity and ther-
mal di↵usion on the flow. When Pr ⌧ 1, the flow is dominated
by thermal di↵usion and vice versa. The equations yield two
complex characteristic frequencies associated to E and K :

!̃ = ! + iE
⇣

m2 + n2
⌘

and !̂ = ! + iK
⇣

m2 + n2
⌘

. (16)

Initially, assuming that f = 0, we get the dispersion relation
of the viscously and thermally damped inertial modes:

!̃2 =
n2 cos2 ✓

m2 + n2 +
m2A

m2 + n2 .
!̃

!̂
. (17)

For slightly damped modes (E ⌧ 1 and K ⌧ 1), we identify
in the second member the wave number k = (kH , 0, kV ), with
kH = m/L and kV = n/L. Indeed,

�2 =

 

2⌦.k
|k|

!2

+

 

N
kH

|k|

!2

, (18)

which underlines the contributions of the inertial and Brunt-
Vaisala frequencies, 2⌦ and N respectively. At the end, we ob-
tain the coe�cients of the velocity field u,
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(19)
and of the pressure p and buoyancy b,
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(20)

bmn =
iAm
!

i!̃ (n fmn � mhmn) � n cos ✓gmn
�

m2 + n2� !̃2 � n2 cos2 ✓ � Am2 !̃

!̂

. (21)

Note that all the coe�cients have the same denominator. It
represents the inertial part of the system. The perturbation is con-
tained by the numerator. To compute the viscous dissipation per
mass unity D due to gravito-inertial waves, the velocity field only
is needful. D is provided by the integration of local mean dissi-
pation on the whole box. Literally:

D =
Z 1

0

Z 1

0

D

�u · ⌫r2
u

E

dxdz, (22)

and more explicitly,

D =
2⇡2⌫

L2
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(m,n)2Z⇤2
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�u2
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�v2mn
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⌘

. (23)

From now on, we use the energy dissipated over a rotation
period of the planet, denoted ⇣, rather than D:

⇣ =
2⇡
⌦

D = 2⇡E
X

(m,n)2Z⇤2
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�v2mn
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⌘

. (24)

⇣ only depends on the control parameters ✓, A, E and K (see
Eq. 14).

2.4. Spectral response

Following Ogilvie & Lin (2004), we plot the frequential spec-
tra of D for various sets of parameters. The coe�cients of the
perturbation are chosen to make our results comparable with the
article’s ones:

fmn = �
i

4 |m| n2 , gmn = 0 and hmn = 0. (25)

The abscissa measure the normalized frequency ! = �/2⌦,
and the ordinates the local viscous dissipation per mass unit
⇣ (logarithmic scale). Fig 3 to 6 correspond to pure inertial
waves (A = 0) in a box located at the pole (✓ = 0). They show
the sensitivity of D to E and to the tidal frequency �. Note
that the spectrum is smooth for high values of E, that is to
say when the flow is dominated by viscosity. At the opposite,
the smaller E, the more numerous and the higher the peaks of
resonances. A decreasing E means an increasing dependence on
!. Furthermore, the cuto↵ frequency for inertial modes, !c = 1
(see Eq. 17 the dispersion relation), clearly appears (Fig. 5 and
6). Beyond ! = 1, the damping is not e�cient any more.

Fig. 7 to 10 give a overview of the dependence of ⇣ on ✓
and A. Both intervene in the dispersion relation and determine
the cuto↵ frequency. Inertial waves (Fig. 7 and 8) are confined
in an interval which tends to decrease with the co-latitude ✓, the
cuto↵ frequency coming closer to zero. At the opposite, the do-
main of gravito-inertial resonances expands with ✓ (Fig. 9 and
10). We observe that !c ⇠ 5 = N/2⌦. At the end, resonances
are obviously more numerous in the gravito-inertial case than in
the inertial one. Hereafter, we switch from this first qualitative
approach to a quantitative physical description of the spectra.
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P being the local pressure and � the Laplace coe�cient and
g the local gravitational acceleration. Assuming the hydrostatic
equilibrium,

N2 = �g
⇢

"

d⇢
dz
+
g⇢2

�P

#

. (2)

2.2. Dynamical equations

Submitted to a tidal perturbation, the fluid moves in the box peri-
odically and dissipates energy through the mechanism of viscous
friction. The local dissipation per mass unit is written :

D = �u · ⌫r2
u, (3)

where u = (u, v, w) is the velocity field in the rotating frame
R. So, to know D, we compute u. We consider that the tidal
forcing f̃ =

⇣

f̃ , g̃, h̃
⌘

and the unknown quantities vary with x̃ and
z̃ only (x̃ 2 [0, L], ỹ 2 [0, L]). It is su�cient to have a good qual-
itative view of the flow in the box. Moreover, when a perturber
orbits near the equatorial plane of the central body, a typical case,
g is smaller than f and h. From now on, in order to highlight the
control parameters of the model, we use the normalized quanti-
ties t, x, z, !, f and B such as :

t = 2⌦t̃, x =
x̃
L
, z =

z̃
L
, ! =

�

2⌦
,

f =
f̃

2⌦
, B =

B̃

2⌦
.

(4)

The corresponding physical quantities are denoted t̃, x̃, z̃, �,
f̃ and B̃.

Dynamics are described by the Navier-Stokes equation,

@u

@t
+ ez ^ u + Ro (

u · r)
u = � 1

2⌦L⇢
rp + NEkr2

u + B + f, (5)

p being the pressure variation. The buoyancy B̃ is defined as
follows :

B̃ = B̃ez = �g
⇢0

⇢
ez, (6)

where the small density variation is denoted ⇢0. We have
introduced the Rossby number and the Ekmann number of the
fluid,

Ro =
U

2⌦R
and NEk =

⌫

2⌦L2 . (7)

with U the characteristic velocity of the flow in the rotating
frame. Here, given that the flow is dominated by the rotation,
Ro ⌧ 1 and the convective term is neglected. The Ekman num-
ber compares the influence of viscous friction on the dynamics
to the inertial e↵ects. It constitutes one of the parameters of our
model.

Then, assuming the flow almost incompressible, we write the
conservation of mass :

r · u = 0. (8)

At the end, our system is closed by the heat equation,

@tB + Aw =


2⌦L2r
2B. (9)

We introduce here a new parameter,

A =
✓ N
2⌦

◆2
, (10)

defining the nature of waves. If A > 1, the tidal perturbation
generates gravito-inertial waves in the fluid. If A < 1, it generates
inertial waves.

2.3. Velocity field and dissipation

f is periodical in time and in space. So we write the quantities as
follows :

ux = <
h

u(x, z)e�i!t
i

, uy = <
h

v(x, z)e�i!t
i

,

uz = <
h

w(x, z)e�i!t
i

, p = <
h

 (x, z)e�i!t
i

,

fx = <
h

f (x, z)e�i!t
i

, fy = <
h

g(x, z)e�i!t
i

,

fz = <
h

h(x, z)e�i!t
i

, B = <
h

b(x, z)e�i!t
i

,

(11)

and the spatial functions are expressed as Fourier series,

u =
X

umnei2⇡(mx+nz), v =
X

vmnei2⇡(mx+nz),

w =
X

wmnei2⇡(mx+nz),  =
X

 mnei2⇡(mx+nz),

f =
X

fmnei2⇡(mx+nz), g =
X

gmnei2⇡(mx+nz),

h =
X

hmnei2⇡(mx+nz), b =
X

bmnei2⇡(mx+nz).

(12)

For an easy reading, the index m and n do not appear under
the sums. They implicitly verify (m, n) 2 Z⇤2. Thus, the previous
system becomes :
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:

�i!umn � cos ✓vmn + sin ✓wmn = �im⇤ mn � E
⇣

m2 + n2
⌘

umn
+ fmn

�i!vmn + cos ✓umn = �E
⇣

m2 + n2
⌘

vmn + gmn

�i!wmn � sin ✓umn = �in⇤ mn � E
⇣

m2 + n2
⌘

wmn
+bmn + hmn

mumn + nwmn = 0

�i!bmn + Awmn = K
⇣

m2 + n2
⌘

bmn

(13)

It is parametrized by the co-latitude ✓ and four characteristic
constants :
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Fig. 3 and 12 describe the case of pure inertial waves (� = 0)
in a viscous fluid (E = 10�2) in the absence of thermal di↵usion,
at the position ✓ = 0 (pole). Note that the rank of the critical har-
monic is rather low, k ⇠ 10, and that the peaks are not numerous
contrary to the other case (Fig. 5 and 13). Indeed, with a smaller
Ekman number, E = 10�4, the structure is well organized and a
greater number of harmonics are resonant. The cuto↵ frequency
appears on Fig. 13 distinctly given that E ⌧ 1. Indeed, the sim-
plified expression of !mn yields:

!mn ⇡
np

m2 + n2
cos ✓, (33)

which induces !c = cos ✓.
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Fig. 12. Structure of the frequential spectrum of dissipation for iner-
tial waves (A = 0) without thermal di↵usion (K =) generated in a box
located at a pole of the body (✓ = 0). The fluid is characterized by its
Ekman number, rather high, E = 10�2. The positions of resonances (in
abscissa, the normalized frequency ! = �/2⌦) are indicated by blue
points as functions of the characteristic rank k of the harmonics (ordi-
nates).
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Fig. 13. Structure of the frequential spectrum of dissipation for inertial
waves (A = 0) without thermal di↵usion (K =) generated in a box
located at the co-latitude ✓ = ⇡/6. The Ekman number is E = 10�4.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).

Now, assume that di↵usivities E and K are first order in-
finitesimals with respect to cos2 ✓ and A. Then, for the main res-
onances (k < 10), the coe�cients ↵, � and � become:
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:

↵ =
n2 cos2 ✓ + m2A

m2 + n2

� = (K + 2E)
⇣

m2 + n2
⌘

� = n2 cos2 ✓K + m2AE

(34)

and the frequency of the resonance (m, n),

!mn =
p
↵ (1 + ") , (35)

where " is a second order perturbation:

" =
�

2↵

✓�

↵
� �
◆

. (36)

Therefore, gravito-inertial waves resonances are located at
the positions:

!mn =

r

n2 cos2 ✓ + Am2

m2 + n2 . (37)

With A = 0, we find the formula corresponding to pure iner-
tial waves seen previously (Eq. 31). When A � cos2 ✓, it gives:

!mn ⇡
mp

m2 + n2

N
2⌦
, (38)

which induces the cuto↵ frequency of gravito-inertial
waves, !c = N/2⌦, distinctly noticeable on Fig. 9, 10, 15
and 16. The positions of resonances only depends on A and
the co-latitude ✓. The viscous and thermal di↵usivities E and
K do not intervene. Thus, we can observe the same spectrum
structure in both cases, dominated by viscosity or by thermal dif-
fusion. The Prandlt number Pr has no influence on this structure.

Moreover, the formula points out an hyper-resonant case
proper to inertial waves (A < 1) and characterized by the equal-
ity:

A = cos2 ✓. (39)

When it is verified, all the peaks are superposed at the resonant
frequency:

!p = !c = cos ✓, (40)

and form a huge single peak. That means that for a given N
such as N < 2⌦, there is a co-latitude ✓ at which the spectrum
of gravito-inertial waves is constituted of a single resonance
whatever the values of E and K (assuming E ⌧ 1 and K ⌧ 1).

Due to the definition of k, there are 2k � 1 points per line on
Fig. 12 to 16. But the symmetries of !mn (see Eq. 37) make that
some of these points have the same positions. Indeed, note that
!m0n0 = !mn if m0 = pm and n0 = pn with p 2 Z⇤. That is why
peaks are not as numerous as modes. We denote kc the maximal
rank of the harmonics dominating the background and Nkc the
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Fig. 3 and 12 describe the case of pure inertial waves (� = 0)
in a viscous fluid (E = 10�2) in the absence of thermal di↵usion,
at the position ✓ = 0 (pole). Note that the rank of the critical har-
monic is rather low, k ⇠ 10, and that the peaks are not numerous
contrary to the other case (Fig. 5 and 13). Indeed, with a smaller
Ekman number, E = 10�4, the structure is well organized and a
greater number of harmonics are resonant. The cuto↵ frequency
appears on Fig. 13 distinctly given that E ⌧ 1. Indeed, the sim-
plified expression of !mn yields:

!mn ⇡
np

m2 + n2
cos ✓, (33)

which induces !c = cos ✓.
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Fig. 12. Structure of the frequential spectrum of dissipation for iner-
tial waves (A = 0) without thermal di↵usion (K =) generated in a box
located at a pole of the body (✓ = 0). The fluid is characterized by its
Ekman number, rather high, E = 10�2. The positions of resonances (in
abscissa, the normalized frequency ! = �/2⌦) are indicated by blue
points as functions of the characteristic rank k of the harmonics (ordi-
nates).
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Fig. 13. Structure of the frequential spectrum of dissipation for inertial
waves (A = 0) without thermal di↵usion (K =) generated in a box
located at the co-latitude ✓ = ⇡/6. The Ekman number is E = 10�4.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).

Now, assume that di↵usivities E and K are first order in-
finitesimals with respect to cos2 ✓ and A. Then, for the main res-
onances (k < 10), the coe�cients ↵, � and � become:
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:

↵ =
n2 cos2 ✓ + m2A

m2 + n2

� = (K + 2E)
⇣

m2 + n2
⌘

� = n2 cos2 ✓K + m2AE

(34)

and the frequency of the resonance (m, n),

!mn =
p
↵ (1 + ") , (35)

where " is a second order perturbation:

" =
�

2↵

✓�

↵
� �
◆

. (36)

Therefore, gravito-inertial waves resonances are located at
the positions:

!mn =

r

n2 cos2 ✓ + Am2

m2 + n2 . (37)

With A = 0, we find the formula corresponding to pure iner-
tial waves seen previously (Eq. 31). When A � cos2 ✓, it gives:

!mn ⇡
mp

m2 + n2

N
2⌦
, (38)

which induces the cuto↵ frequency of gravito-inertial
waves, !c = N/2⌦, distinctly noticeable on Fig. 9, 10, 15
and 16. The positions of resonances only depends on A and
the co-latitude ✓. The viscous and thermal di↵usivities E and
K do not intervene. Thus, we can observe the same spectrum
structure in both cases, dominated by viscosity or by thermal dif-
fusion. The Prandlt number Pr has no influence on this structure.

Moreover, the formula points out an hyper-resonant case
proper to inertial waves (A < 1) and characterized by the equal-
ity:

A = cos2 ✓. (39)

When it is verified, all the peaks are superposed at the resonant
frequency:

!p = !c = cos ✓, (40)

and form a huge single peak. That means that for a given N
such as N < 2⌦, there is a co-latitude ✓ at which the spectrum
of gravito-inertial waves is constituted of a single resonance
whatever the values of E and K (assuming E ⌧ 1 and K ⌧ 1).

Due to the definition of k, there are 2k � 1 points per line on
Fig. 12 to 16. But the symmetries of !mn (see Eq. 37) make that
some of these points have the same positions. Indeed, note that
!m0n0 = !mn if m0 = pm and n0 = pn with p 2 Z⇤. That is why
peaks are not as numerous as modes. We denote kc the maximal
rank of the harmonics dominating the background and Nkc the
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number of noticeable resonance peaks. Then, as shown by Table
1 for first modes, Nkc < k2

c . The layer of harmonics k brings pk
new peaks:

pk = 2k � 1 �
X

i|k/ki2N⇤
ki primenumber

pi (41)

Thus, the number of peaks can be computed with the follow-
ing recurrence series:

Nkc =

kc
X

k=1

pk (42)

kc 1 2 3 4 5 6 7 8 9 10
k2

c 1 4 9 16 25 36 49 64 81 100
Nkc 1 3 7 11 19 23 35 43 55 65

Table 1. Numerical comparison between the number of peaks Nkc and
the number of modes k2

c , kc being the rank of the higher harmonics, for
the main resonances (1  k  10).
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Fig. 14. The real number of resonances Nkc and its first order approx-
imation k2

c in function of the rank of the highest harmonics kc for the
main resonances (1  k  10).

3.2. Width of resonances

Similarly to their positions, the widths at mid-height lmn of peaks
are fully determined by the inertial terms of the system. We sup-
pose that ⇠mn, the numerator of Dmn, varies smoothly compared
to its denominator. Then, the width at mid-height is defined by
the relation:

Dmn

 

!mn +
lmn

2

!

=
1
2

Dmn (!mn) , (43)

i.e.

⇠mn

P
 

!mn +
lmn

2

! =
1
2
⇠mn

P (!mn)
. (44)
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Fig. 15. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by viscous di↵usion (E = 10�4 and
K = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).
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Fig. 16. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by thermal di↵usion (K = 10�4 and
E = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).

This means solving the equation:

P
 

!mn +
lmn

2

!

= P (!mn) . (45)

Assuming E ⌧ 1 and K ⌧ 1, we obtain:

lmn =
⇣

m2 + n2
⌘ Am2K +

⇣

2n2 cos2 ✓ + Am2
⌘

E

n2 cos2 ✓ + Am2 . (46)

Looking at the form of this expression, we introduce two crit-
ical numbers,

Amn (✓) =
2n2

m2 cos2 ✓ and Prmn (✓, A) =
A

A + Amn (✓)
, (47)
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and K = 0. In abscissa, the normalized frequency ! = �/2⌦.
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the domain is restricted to the interval [0;+1[. There is a single
physical solution but in the case where 2↵ < �2 and ↵2 > 2�� at
the same time, and this solution is:

!mn =
1p
3

"

2↵ � �2 +

q

�4 + ↵2 � 4↵�2 + 6��
#

1
2

. (30)

First, we consider the bi-parameter case: A = 0, K = 0 (the
solution only depends on the position ✓ and the Ekman number
E). The resonance frequency !mn becomes:

!mn =

r

n2 cos2 ✓

m2 + n2 � E2 �m2 + n2�2. (31)

This shows that beyond a critical rank, harmonics are
damped. The first orders only are resonant because they verify
the condition:

n
�

m2 + n2�3
>
✓ E
cos ✓

◆2
. (32)
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Fig. 9. Frequential spectrum of the energy per mass unit ⇣ locally dis-
sipated by gravito-inertial waves (A = 25) at the position ✓ = ⇡/6 for
E = 10�4 and K = 0. In abscissa, the normalized frequency ! = �/2⌦.
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Fig. 10. Frequential spectrum of the energy per mass unit ⇣ locally
dissipated by gravito-inertial waves (A = 25) at the position ✓ = ⇡/3 for
E = 10�4 and K = 0. In abscissa, the normalized frequency ! = �/2⌦.

Thus, the smaller E and ✓, the more numerous the peaks.
And that is what we observe on graphs (Fig. 3 to 10). More-
over, by plotting the positions, we retrieve the global structure
of spectra. To represent the doublet (m, n) with one axis only,
the characteristic rank of the harmonic k is introduced (Fig. 11),
k = max {|m|, |n|}. k stands for the order of the resonance.

Fig. 11. Characteristic rank k of the harmonic defined by the doublet
(m, n) .
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which determine asymptotical behaviors. A ⌧ Amn charac-
terizes inertial waves, A � Amn gravito-inertial waves. In the
same way, if Pr ⌧ Prmn, the resonance is dominated by thermal
di↵usion ; if Pr � Prmn, it is dominated by viscosity (Fig. 17).
The formulae (Table 2) illustrate this point. Note that lmn only
depends on the di↵usivities E and K but in the case of inertial
waves with an important thermal di↵usion. Neither ✓ nor K inter-
venes else. The width at mid-height does not depend on K when
Pr � Prmn. Otherwise, it is not influenced by E. There is an
obvious symmetry between E and K for gravito-inertial waves:
whatever the case considered, the width increases with the di↵u-
sivity, E or K, as shown by the spectra (Fig. 3 to 6). At the end,
we may notice that the inertial peaks are twice wider than the
gravito-inertial ones.

Domain A ⌧ Amn A � Amn

Pr � Prmn 2E
⇣

m2 + n2
⌘

E
⇣

m2 + n2
⌘

Pr ⌧ Prmn AK
m2
⇣

m2 + n2
⌘

n2 cos2 ✓
K
⇣

m2 + n2
⌘

Table 2. Asymptotical behaviors of the width at mid-height lmn of the
resonance associated to the doublet (m, n).

Fig. 17. Asymptotical domains. The areas at left (light blue and purple)
correspond to inertial waves, the ones at right (red and green) corre-
spond to gravito-inertial waves. The fluid is dominated by viscosity in
the blue and red areas, it is dominated by thermal di↵usivity in the green
and purple ones.

Plotting the width of the main resonance, l11, allows us to
visualize the asymptotical tendencies. The corners on Fig. 18
and 19 indicate the transition area defined by A11 and Pr11. Far
from it, l11 depends on one di↵usivity, E or K, only. When A de-
creases, l11 tends to be proportional to E (Fig. 18). On Fig. 19 we
observe the dependence of Pr11 on A (see Eq. 47): for high val-
ues of A, Pr11 ⇡ 1. Fig. 20 and 21 illustrate the accuracy degree

of the analytical formulae. They compare analytical predictions
to numerical results. Notice that the smaller E and K, the better
the analytical scaling laws.
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Fig. 18. dependence of the width at mid-height l11 (main resonance) on
the Ekman number E for di↵erent values of A (logarithmic scales).
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Fig. 19. dependence of the width at mid-height l11 (main resonance) on
the thermal di↵usivity K for di↵erent values of A (logarithmic scales).

3.3. Amplitude of resonances

Consider the energy dissipated per mass unit over a rotation of
the planet (T = 2⇡⌦�1): ⇣T = DT . The height of resonances
depends on the tidal perturbation f. For perturbation coe�cients
of the form

fmn = i
F
|m| n2 , gmn = 0, hmn = 0, (48)

and assuming E ⌧ 1 and K ⌧ 1, we get the height of peaks:

Hmn =
8⇡F2E

m2n2 �m2 + n2�2

⇣

2n2 cos2 ✓ + Am2
⌘ ⇣

n2 cos2 ✓ + Am2
⌘

⇥

Am2K +
�

2n2 cos2 ✓ + Am2� E
⇤2 ,

(49)

where we find the critical numbers Amn and Prmn introduced
in the previous section:
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number of noticeable resonance peaks. Then, as shown by Table
1 for first modes, Nkc < k2

c . The layer of harmonics k brings pk
new peaks:

pk = 2k � 1 �
X

i|k/ki2N⇤
ki primenumber

pi (41)

Thus, the number of peaks can be computed with the follow-
ing recurrence series:

Nkc =

kc
X

k=1

pk (42)

kc 1 2 3 4 5 6 7 8 9 10
k2

c 1 4 9 16 25 36 49 64 81 100
Nkc 1 3 7 11 19 23 35 43 55 65

Table 1. Numerical comparison between the number of peaks Nkc and
the number of modes k2

c , kc being the rank of the higher harmonics, for
the main resonances (1  k  10).
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Fig. 14. The real number of resonances Nkc and its first order approx-
imation k2

c in function of the rank of the highest harmonics kc for the
main resonances (1  k  10).

3.2. Width of resonances

Similarly to their positions, the widths at mid-height lmn of peaks
are fully determined by the inertial terms of the system. We sup-
pose that ⇠mn, the numerator of Dmn, varies smoothly compared
to its denominator. Then, the width at mid-height is defined by
the relation:

Dmn

 

!mn +
lmn

2

!

=
1
2

Dmn (!mn) , (43)

i.e.

⇠mn

P
 

!mn +
lmn

2

! =
1
2
⇠mn

P (!mn)
. (44)
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Fig. 15. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by viscous di↵usion (E = 10�4 and
K = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).
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Fig. 16. Structure of the frequential spectrum of dissipation for gravito-
inertial waves (A = 25) dominated by thermal di↵usion (K = 10�4 and
E = 10�10) and generated in a box located at the co-latitude ✓ = ⇡/6.
The positions of resonances (in abscissa, the normalized frequency ! =
�/2⌦) are indicated by blue points as functions of the characteristic
rank k of the harmonics (ordinates).

This means solving the equation:

P
 

!mn +
lmn

2

!

= P (!mn) . (45)

Assuming E ⌧ 1 and K ⌧ 1, we obtain:

lmn =
⇣

m2 + n2
⌘ Am2K +

⇣

2n2 cos2 ✓ + Am2
⌘

E

n2 cos2 ✓ + Am2 . (46)

Looking at the form of this expression, we introduce two crit-
ical numbers,

Amn (✓) =
2n2

m2 cos2 ✓ and Prmn (✓, A) =
A

A + Amn (✓)
, (47)
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Fig. 20. Relative di↵erence between the analytical prediction and nu-
merical results for a width l11 (main resonance) varying with E and A
(logarithmic scales).

Fig. 21. Relative di↵erence between the analytical prediction and nu-
merical results for a width l11 (main resonance) varying with K and A
(logarithmic scales).

Hmn =
8⇡F2Pr2

mn

m2n2 �m2 + n2�2

Pr2 (A + Amn)
⇣

A + 1
2 Amn

⌘

EA2 (Pr + Prmn)2 . (50)

Thus, the height is characterized by the same asymptotical
domains as the width. The frontiers between them depend on
Amn and Prmn (Table 3). Note that when the fluid is dominated
by viscosity, Hmn is inversely proportional to the Ekman num-
ber contrary to lmn. This means that the smaller E, the higher the

peak, the sharper the spectrum. What is more, gravito-inertial
peaks are twice higher and twice thiner than inertial ones. As
regards the case Pr ⌧ Prmn, the analytical formulae show that
Hmn depends at the same time on E and K. Finally, we may no-
tice that Hmn ⇠ 1/k8. Consequently, the main resonances only
have an impact on dissipation. High order harmonics remain un-
seen.

Domain A ⌧ Amn A � Amn

Pr � Prmn
4⇡F2

m2n2 �m2 + n2�2 E

8⇡F2

m2n2 �m2 + n2�2 E

Pr ⌧ Prmn
16⇡F2n2

m6 �m2 + n2�2
E cos4 ✓

A2K2
8⇡F2

m2n2 �m2 + n2�2
E
K2

Table 3. Asymptotical behaviors of the height Hmn of the resonance
associated to the doublet (m, n).

The graphs of the height of the main resonance, H11, com-
puted numerically as a function of A, E and K, give an overview
of the e↵ects predicted by formulae (Fig. 22 and 23). The no-
ticeable maximum of H11 (Fig. 22) results from the inversion of
the dependence on E, for Pr ⇠ Pr11. As expected, its position
varies with A until A � 1, where Pr11 ⇡ 1. Likewise, Fig. 23
corroborates the analytical study. As recalled by Fig. 24 and 25,
this one remains relevant for small values of E and K.
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Fig. 22. dependence of the height H11 (main resonance) on the Ekman
number E for di↵erent values of A (logarithmic scales).

3.4. The non-resonant background

What we call the resonant background is the characteristic level
reached by dissipation in non-resonant areas belonging to the
domain of resonances (! < !c). It results from the contributions
of the nearest main peaks. Therefore, looking at the shape of the
spectra, we estimate the background by computing the term of
the main resonance at a frequency !bg equidistant to it and to its
neighbor of mode (2, 1):

!bg = !11 (1 + "12) , (51)

with the relative distance between the two peaks, "12 defined
as follows:
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which determine asymptotical behaviors. A ⌧ Amn charac-
terizes inertial waves, A � Amn gravito-inertial waves. In the
same way, if Pr ⌧ Prmn, the resonance is dominated by thermal
di↵usion ; if Pr � Prmn, it is dominated by viscosity (Fig. 17).
The formulae (Table 2) illustrate this point. Note that lmn only
depends on the di↵usivities E and K but in the case of inertial
waves with an important thermal di↵usion. Neither ✓ nor K inter-
venes else. The width at mid-height does not depend on K when
Pr � Prmn. Otherwise, it is not influenced by E. There is an
obvious symmetry between E and K for gravito-inertial waves:
whatever the case considered, the width increases with the di↵u-
sivity, E or K, as shown by the spectra (Fig. 3 to 6). At the end,
we may notice that the inertial peaks are twice wider than the
gravito-inertial ones.

Domain A ⌧ Amn A � Amn

Pr � Prmn 2E
⇣

m2 + n2
⌘

E
⇣

m2 + n2
⌘

Pr ⌧ Prmn AK
m2
⇣

m2 + n2
⌘

n2 cos2 ✓
K
⇣

m2 + n2
⌘

Table 2. Asymptotical behaviors of the width at mid-height lmn of the
resonance associated to the doublet (m, n).

Fig. 17. Asymptotical domains. The areas at left (light blue and purple)
correspond to inertial waves, the ones at right (red and green) corre-
spond to gravito-inertial waves. The fluid is dominated by viscosity in
the blue and red areas, it is dominated by thermal di↵usivity in the green
and purple ones.

Plotting the width of the main resonance, l11, allows us to
visualize the asymptotical tendencies. The corners on Fig. 18
and 19 indicate the transition area defined by A11 and Pr11. Far
from it, l11 depends on one di↵usivity, E or K, only. When A de-
creases, l11 tends to be proportional to E (Fig. 18). On Fig. 19 we
observe the dependence of Pr11 on A (see Eq. 47): for high val-
ues of A, Pr11 ⇡ 1. Fig. 20 and 21 illustrate the accuracy degree

of the analytical formulae. They compare analytical predictions
to numerical results. Notice that the smaller E and K, the better
the analytical scaling laws.
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Fig. 18. dependence of the width at mid-height l11 (main resonance) on
the Ekman number E for di↵erent values of A (logarithmic scales).
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Fig. 19. dependence of the width at mid-height l11 (main resonance) on
the thermal di↵usivity K for di↵erent values of A (logarithmic scales).

3.3. Amplitude of resonances

Consider the energy dissipated per mass unit over a rotation of
the planet (T = 2⇡⌦�1): ⇣T = DT . The height of resonances
depends on the tidal perturbation f. For perturbation coe�cients
of the form

fmn = i
F
|m| n2 , gmn = 0, hmn = 0, (48)

and assuming E ⌧ 1 and K ⌧ 1, we get the height of peaks:

Hmn =
8⇡F2E

m2n2 �m2 + n2�2

⇣

2n2 cos2 ✓ + Am2
⌘ ⇣

n2 cos2 ✓ + Am2
⌘

⇥

Am2K +
�

2n2 cos2 ✓ + Am2� E
⇤2 ,

(49)

where we find the critical numbers Amn and Prmn introduced
in the previous section:
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which determine asymptotical behaviors. A ⌧ Amn charac-
terizes inertial waves, A � Amn gravito-inertial waves. In the
same way, if Pr ⌧ Prmn, the resonance is dominated by thermal
di↵usion ; if Pr � Prmn, it is dominated by viscosity (Fig. 17).
The formulae (Table 2) illustrate this point. Note that lmn only
depends on the di↵usivities E and K but in the case of inertial
waves with an important thermal di↵usion. Neither ✓ nor K inter-
venes else. The width at mid-height does not depend on K when
Pr � Prmn. Otherwise, it is not influenced by E. There is an
obvious symmetry between E and K for gravito-inertial waves:
whatever the case considered, the width increases with the di↵u-
sivity, E or K, as shown by the spectra (Fig. 3 to 6). At the end,
we may notice that the inertial peaks are twice wider than the
gravito-inertial ones.

Domain A ⌧ Amn A � Amn

Pr � Prmn 2E
⇣

m2 + n2
⌘

E
⇣

m2 + n2
⌘

Pr ⌧ Prmn AK
m2
⇣

m2 + n2
⌘

n2 cos2 ✓
K
⇣

m2 + n2
⌘

Table 2. Asymptotical behaviors of the width at mid-height lmn of the
resonance associated to the doublet (m, n).

Fig. 17. Asymptotical domains. The areas at left (light blue and purple)
correspond to inertial waves, the ones at right (red and green) corre-
spond to gravito-inertial waves. The fluid is dominated by viscosity in
the blue and red areas, it is dominated by thermal di↵usivity in the green
and purple ones.

Plotting the width of the main resonance, l11, allows us to
visualize the asymptotical tendencies. The corners on Fig. 18
and 19 indicate the transition area defined by A11 and Pr11. Far
from it, l11 depends on one di↵usivity, E or K, only. When A de-
creases, l11 tends to be proportional to E (Fig. 18). On Fig. 19 we
observe the dependence of Pr11 on A (see Eq. 47): for high val-
ues of A, Pr11 ⇡ 1. Fig. 20 and 21 illustrate the accuracy degree

of the analytical formulae. They compare analytical predictions
to numerical results. Notice that the smaller E and K, the better
the analytical scaling laws.

−8

−7

−6

−5

−4

−3

−2

−1

−9 −8 −7 −6 −5 −4 −3 −2

lo
g 1

0 l
11

log10 E

A = 10ï4

A = 10ï3

A = 10ï2

A = 10ï1

A = 100

A = 101

A = 102

A = 103

Fig. 18. dependence of the width at mid-height l11 (main resonance) on
the Ekman number E for di↵erent values of A (logarithmic scales).
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Fig. 19. dependence of the width at mid-height l11 (main resonance) on
the thermal di↵usivity K for di↵erent values of A (logarithmic scales).

3.3. Amplitude of resonances

Consider the energy dissipated per mass unit over a rotation of
the planet (T = 2⇡⌦�1): ⇣T = DT . The height of resonances
depends on the tidal perturbation f. For perturbation coe�cients
of the form

fmn = i
F
|m| n2 , gmn = 0, hmn = 0, (48)

and assuming E ⌧ 1 and K ⌧ 1, we get the height of peaks:

Hmn =
8⇡F2E

m2n2 �m2 + n2�2

⇣

2n2 cos2 ✓ + Am2
⌘ ⇣

n2 cos2 ✓ + Am2
⌘

⇥

Am2K +
�

2n2 cos2 ✓ + Am2� E
⇤2 ,

(49)

where we find the critical numbers Amn and Prmn introduced
in the previous section:
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"12 ⇡
p

2 �
p

5p
20

= "in if A ⌧ cos2 ✓, and

"12 ⇡
2
p

2 �
p

5p
20

= "grav if A � cos2 ✓.

(59)

Thus, the relative distance between !11 and !bg belongs

to the interval

h

"in, "grav
i

, "in and "grav being the distances

corresponding to the asymptotical cases A ⌧ cos2 ✓ and

A � cos2 ✓, inertial waves and gravito-inertial waves respec-

tively. Numerically,

"in ⇡ �0.183 and "grav ⇡ 0.132. (60)

From this, we deduce the asymptotical values of Cin and

Cgrav :

C1in = Cin ("in) = 32.87
C1grav = Cgrav

⇣

"grav
⌘

= 93.74. (61)

Using the previous expressions of "12, we observe that the
dependence of the non-resonant background on E is linear only
if:

max
np

A, cos ✓
o

� max {E,K} . (62)

and we obtain the expression of Hbg in each asymptotical
case (Table 4), inertial waves and gravito-inertial waves.

Hbg = 4⇡F2E
C1gravA +C1in cos2 ✓
�

A + cos2 ✓
�2 (63)

Note that the background does not depend on the Prandlt if
we assume the condition 62. Its level is only defined by the ratio
A/ cos2 ✓.

A ⌧ cos2 ✓ A � cos2 ✓

4⇡C1in F2 E
cos2 ✓

4⇡C1gravF2 E
A

Table 4. Asymptotical behaviors of the non-resonant background level
Hbg of the spectrum. A ⌧ cos2 ✓ corresponds to inertial waves and A �
cos2 ✓ to gravito-inertial waves.

Then, to be noticeable in the spectrum, the harmonics have
to match a criterium determined by the asymptotical domains
(Table 5). This criterium corresponds to the inequality:

Hmn > Hbg, (64)

with the heights Hmn defined in the previous subsection.
The characteristic order k introduced before allows to write

the conditions of existence of the peaks. We replace the index m
and n of the height Hmn by k and use the criterium 64. These con-
ditions directly provide the rank kc of the smaller peaks (Table
5):
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Fig. 26. Dependence of the background level on the Ekman number E
for di↵erent values of A, with K = 10�4.
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formula which can be simplified in asymptotical cases and
under the condition 62:

kc ⇠
8

>

>

>

<

>

>

>

:

1
2

⇣

2 cos2 ✓ + A
⌘ ⇣

A + cos2 ✓
⌘3

⇥

AK +
�

2 cos2 +A
�

E
⇤2 hC1in cos2 ✓ +C1gravA

i

9

>

>

>

=

>

>

>

;

1
8
. (66)

Taking into account resonances beyond this rank does not
change the global shape of the spectrum of dissipation. In fact,
in the situations corresponding to the previous spectrum, there is
no need to go far beyond k ⇠ 10 (Fig. 28 and 29). That is amply
su�cient to model the dissipation realistically.

The formula gives us the number of peaks of a spectrum as a
function of kc. Thus, assuming that Nkc ⇠ k2

c , we deduce Nkc in
the asymptotical domains (Table 6) from the rank of the highest
harmonics (Table 5). Nkc is given by the analytical expression:
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, "in and "grav being the distances

corresponding to the asymptotical cases A ⌧ cos2 ✓ and

A � cos2 ✓, inertial waves and gravito-inertial waves respec-

tively. Numerically,

"in ⇡ �0.183 and "grav ⇡ 0.132. (60)

From this, we deduce the asymptotical values of Cin and

Cgrav :

C1in = Cin ("in) = 32.87
C1grav = Cgrav
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"grav
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= 93.74. (61)

Using the previous expressions of "12, we observe that the
dependence of the non-resonant background on E is linear only
if:

max
np

A, cos ✓
o

� max {E,K} . (62)

and we obtain the expression of Hbg in each asymptotical
case (Table 4), inertial waves and gravito-inertial waves.

Hbg = 4⇡F2E
C1gravA +C1in cos2 ✓
�

A + cos2 ✓
�2 (63)

Note that the background does not depend on the Prandlt if
we assume the condition 62. Its level is only defined by the ratio
A/ cos2 ✓.

A ⌧ cos2 ✓ A � cos2 ✓

4⇡C1in F2 E
cos2 ✓

4⇡C1gravF2 E
A

Table 4. Asymptotical behaviors of the non-resonant background level
Hbg of the spectrum. A ⌧ cos2 ✓ corresponds to inertial waves and A �
cos2 ✓ to gravito-inertial waves.

Then, to be noticeable in the spectrum, the harmonics have
to match a criterium determined by the asymptotical domains
(Table 5). This criterium corresponds to the inequality:

Hmn > Hbg, (64)

with the heights Hmn defined in the previous subsection.
The characteristic order k introduced before allows to write

the conditions of existence of the peaks. We replace the index m
and n of the height Hmn by k and use the criterium 64. These con-
ditions directly provide the rank kc of the smaller peaks (Table
5):
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Taking into account resonances beyond this rank does not
change the global shape of the spectrum of dissipation. In fact,
in the situations corresponding to the previous spectrum, there is
no need to go far beyond k ⇠ 10 (Fig. 28 and 29). That is amply
su�cient to model the dissipation realistically.

The formula gives us the number of peaks of a spectrum as a
function of kc. Thus, assuming that Nkc ⇠ k2

c , we deduce Nkc in
the asymptotical domains (Table 6) from the rank of the highest
harmonics (Table 5). Nkc is given by the analytical expression:
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Fig. 28. dependence of the rank of highest peaks kc on the Ekman
number E for di↵erent values of A (logarithmic scales).
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Note that Nkc / E�1/2 for flows dominated by viscosity
and the Coriolis acceleration (with the particular perturbation
coe�cients fmn / 1/ |m| n2), as shown by the graph 30. So,
in this case, the number of peaks decreases with the Ekman
number. It corroborates spectra (Fig. 3 to 6).
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At the end, is seems interesting here to introduce a sharp-
ness rate ⌅ defined as the ratio between the height of the main
resonance and the background level:

⌅ =
H11

Hbg
. (69)

Is is expressed:
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formula which may be simplified in asymptotical domains:
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Fig. 31. dependence of the number of peaks Nkc on the thermal di↵u-
sivity K for di↵erent values of A (logarithmic scales).
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Fig. 32. dependence of the sharpness rate ⌅ on the Ekman number E
for di↵erent values of A (logarithmic scales).

Technically, ⌅ corresponds to the sensitivity of the dissipa-
tion to the frequency. High values of this rate point out the ne-
cessity to take this dependence into account. Like kc, ⌅ presents
symmetrical behaviors for gravito-inertial waves (Table 7). Il
is inversely proportional to the square of the di↵usivity, E (for
Pr � Pr11) or K (for Pr ⌧ Pr11), which means that the sensitiv-
ity to the frequency increases quadratically when the di↵usivity
decreases (Fig. 32 and 33). In the same way, ⌅ increases with A
quadratically in the domain A � cos2 ✓. If A ⌧ cos2 ✓, then it is
correlated to the co-latitude ✓.

At the end, note the relation between the highest mode kc,
the number of resonances Nkc and the sharpness rate ⌅,

Nkc ⇠ k2
c ⇠ ⌅

1
4 , (72)

in which the exponent 1/4 depends on the form of the coef-
ficients of the perturbation (here fmn / 1/ |m| n2).
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Fig. 33. dependence of the sharpness rate ⌅ on the thermal di↵usivity
K for di↵erent values of A (logarithmic scales).

Domain A ⌧ A11 A � A11

Pr � Pr11
cos2 ✓

4C1in E2
A

2C1gravE2

Pr ⌧ Pr11
cos6 ✓

C1in A2K2
A

2C1gravK2

Table 7. Asymptotical expressions of the sharpness rate ⌅ characteriz-
ing the spectrum.

4. Discussion

Bilan et comparaison par rapport a ce qui existe

5. Conclusion and perspectives

We have revisited here the physics of gravito-inertial waves
which occur in fluid planetary regions. These waves may be gen-
erated by a tidal perturber. Then, as they dissipate energy through
the mechanism of viscous friction, they determine the quality
factor Q of the orbital dynamics which is still today defined em-
pirically. The local model used for the study is inspired from the
one proposed by Ogilvie & Lin (2004). It provides an analytical
expression of the viscous dissipation which allows to understand
the influences of the fluid parameters on the mechanism. This
article constitutes the first part of a work aiming at characteriz-
ing each of these dependence qualitatively. Thus, we have here
taken into account rotation, stratification and thermal di↵usivity.
A forthcoming study will complete this overview by considering
the e↵ect of a magnetic field in the fluid box.

We have established the properties of the resonances explic-
itly. We identify asymptotical behaviors and show that the po-
sitions, widths, and heights of the peaks depend on their modes
and on the parameters of the system: the latitude, the Ekman
number, the Brunt-Vaisala frequency and the thermal di↵usivity.
Moreover, we deduce from the expression of the dissipation the
level of the resonant background. This one yields an estimation
of the number of resonances which is directly correlated to the
sharpness of the spectrum. So, resonances are fully characterized
by scaling laws in our local model.

The next step will consist in switching from the fluid box to
a completely fluid spherical planet in order to obtain quantitative
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erated by a tidal perturber. Then, as they dissipate energy through
the mechanism of viscous friction, they determine the quality
factor Q of the orbital dynamics which is still today defined em-
pirically. The local model used for the study is inspired from the
one proposed by Ogilvie & Lin (2004). It provides an analytical
expression of the viscous dissipation which allows to understand
the influences of the fluid parameters on the mechanism. This
article constitutes the first part of a work aiming at characteriz-
ing each of these dependence qualitatively. Thus, we have here
taken into account rotation, stratification and thermal di↵usivity.
A forthcoming study will complete this overview by considering
the e↵ect of a magnetic field in the fluid box.

We have established the properties of the resonances explic-
itly. We identify asymptotical behaviors and show that the po-
sitions, widths, and heights of the peaks depend on their modes
and on the parameters of the system: the latitude, the Ekman
number, the Brunt-Vaisala frequency and the thermal di↵usivity.
Moreover, we deduce from the expression of the dissipation the
level of the resonant background. This one yields an estimation
of the number of resonances which is directly correlated to the
sharpness of the spectrum. So, resonances are fully characterized
by scaling laws in our local model.

The next step will consist in switching from the fluid box to
a completely fluid spherical planet in order to obtain quantitative
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"12 ⇡
p

2 �
p

5p
20

= "in if A ⌧ cos2 ✓, and

"12 ⇡
2
p

2 �
p

5p
20

= "grav if A � cos2 ✓.

(59)

Thus, the relative distance between !11 and !bg belongs

to the interval

h

"in, "grav
i

, "in and "grav being the distances

corresponding to the asymptotical cases A ⌧ cos2 ✓ and

A � cos2 ✓, inertial waves and gravito-inertial waves respec-

tively. Numerically,

"in ⇡ �0.183 and "grav ⇡ 0.132. (60)

From this, we deduce the asymptotical values of Cin and

Cgrav :

C1in = Cin ("in) = 32.87
C1grav = Cgrav

⇣

"grav
⌘

= 93.74. (61)

Using the previous expressions of "12, we observe that the
dependence of the non-resonant background on E is linear only
if:

max
np

A, cos ✓
o

� max {E,K} . (62)

and we obtain the expression of Hbg in each asymptotical
case (Table 4), inertial waves and gravito-inertial waves.

Hbg = 4⇡F2E
C1gravA +C1in cos2 ✓
�

A + cos2 ✓
�2 (63)

Note that the background does not depend on the Prandlt if
we assume the condition 62. Its level is only defined by the ratio
A/ cos2 ✓.

A ⌧ cos2 ✓ A � cos2 ✓

4⇡C1in F2 E
cos2 ✓

4⇡C1gravF2 E
A

Table 4. Asymptotical behaviors of the non-resonant background level
Hbg of the spectrum. A ⌧ cos2 ✓ corresponds to inertial waves and A �
cos2 ✓ to gravito-inertial waves.

Then, to be noticeable in the spectrum, the harmonics have
to match a criterium determined by the asymptotical domains
(Table 5). This criterium corresponds to the inequality:

Hmn > Hbg, (64)

with the heights Hmn defined in the previous subsection.
The characteristic order k introduced before allows to write

the conditions of existence of the peaks. We replace the index m
and n of the height Hmn by k and use the criterium 64. These con-
ditions directly provide the rank kc of the smaller peaks (Table
5):
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Fig. 26. Dependence of the background level on the Ekman number E
for di↵erent values of A, with K = 10�4.
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Fig. 27. Dependence of the background level on the thermal di↵usivity
K for di↵erent values of A, with E = 10�4.
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(65)

formula which can be simplified in asymptotical cases and
under the condition 62:
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Taking into account resonances beyond this rank does not
change the global shape of the spectrum of dissipation. In fact,
in the situations corresponding to the previous spectrum, there is
no need to go far beyond k ⇠ 10 (Fig. 28 and 29). That is amply
su�cient to model the dissipation realistically.

The formula gives us the number of peaks of a spectrum as a
function of kc. Thus, assuming that Nkc ⇠ k2

c , we deduce Nkc in
the asymptotical domains (Table 6) from the rank of the highest
harmonics (Table 5). Nkc is given by the analytical expression:
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Domain A ⌧ A11 A � A11

Pr � Pr11 kc ⇠
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1
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1
8

Table 5. Asymptotical behaviors of the maximal order of noticeable
resonances kc.
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Fig. 28. dependence of the rank of highest peaks kc on the Ekman
number E for di↵erent values of A (logarithmic scales).
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Fig. 29. dependence of the rank of highest peaks kc on the thermal
di↵usivity K for di↵erent values of A (logarithmic scales).
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which is asymptotically equivalent to:
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Note that Nkc / E�1/2 for flows dominated by viscosity
and the Coriolis acceleration (with the particular perturbation
coe�cients fmn / 1/ |m| n2), as shown by the graph 30. So,
in this case, the number of peaks decreases with the Ekman
number. It corroborates spectra (Fig. 3 to 6).
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Table 6. Asymptotical behaviors of the number of peaks Nkc.
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Fig. 30. dependence of the number of peaks Nkc on the Ekman number
E for di↵erent values of A (logarithmic scales).

At the end, is seems interesting here to introduce a sharp-
ness rate ⌅ defined as the ratio between the height of the main
resonance and the background level:

⌅ =
H11

Hbg
. (69)

Is is expressed:
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formula which may be simplified in asymptotical domains:
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