## The PLATO 2.0 Mission



#### Heike Rauer Institute for Planetary Research, DLR, Berlin Center for Astronomy and Astrophysics, TU Berlin

#### and the PLATO Team



# **PLATO 2.0**

- Selected as ESA M3 mission in February 2014
- Schedule:
  - Kick-off Phase B1 in July 2014
  - SRR review for mission adoption March 2016
  - Launch Q1 2024

# **PLATO 2.0**

#### PLATO 2.0 is a survey mission with the prime goals to:

- detect planets down to Earth size
- characterize the bulk planet parameters
  - o radius (~2%)
  - o mass (~10%)
  - age (~10%)
- for a large sample of planets
- for orbital distances up to the habitable zone of solar-like stars
- with well-known parameters of host stars
- provide input for improved stellar models and to galactic science

## **Diversity of "super-Earths"**



### **Planet diversity**



### "Super-Earths": diversity and implications on habitability

Solar System planets are NOT the general rule

- Small exoplanets are very diverse: from Earth-like to mini-gas planets
- Mini-gas planets are likely not habitable



PLATO 2.0 will provide:

 $\rightarrow$  accurate mean densities to identify terrestrial planets

 $\rightarrow$  bulk characterize targets for atmosphere spectroscopy follow-up



### **Planet diversity**

All planets Planets with P>80 days RV confirmed TTV confirmed Mean density [g/cm³] H. Rober, DLR, 2014-5-20 (Based on exoplanation) **RV** confirmed TTV confirmer Mean density [g/cm<sup>3</sup>] 10 0. 10 0.1 1 100 1000 Mass [Earth masses] ailicate Neptune Jupiter Saturn Urenus PLATO 2.0 will fill the parameter range for long orbital periods 0.1 Our knowledge on planet 100 1000 0.1 10 nature is limited to close-Mass [Earth masses] in planets so far.

#### Status: Characterized "super-Earths" in their habitable zone

#### **Detected super-Earths**



- Goal: Detect and characterize super-Earths in habitable zones
- Status: few small/light planets in habitable zones detected

#### Status: Characterized "super-Earths" in their habitable zone

#### "Super-Earths" with characterized radius and mass



H. Rauer, DLR, 2014-5-20 (based on exoplanet.eu)

- Goal: Detect and characterize super-Earths in habitable zones
- Status: few small/light planets in habitable zones detected

 $\rightarrow$  No "super-Earths" with known mean density in the habitable zone

## Transit missions: What's next?

(RV)planets,

observe fields in the ecliptic

plane for ~80 days/field



K-2 (Kepler 2) (NASA)

![](_page_9_Picture_2.jpeg)

![](_page_9_Picture_3.jpeg)

![](_page_9_Picture_4.jpeg)

CHEOPS (ESA, launch 2017): follow-up, radii of detected

![](_page_9_Picture_5.jpeg)

PLATO 2.0 (ESA, launch 2024) detect and characterize (density, age) terrestrial planets around solar-like stars up to the habitable zone

#### Prospects: Characterized "super-Earths" in their habitable zone

## "Super-Earths" with characterized radius <u>and</u> mass

![](_page_10_Figure_2.jpeg)

 TESS, CHEOPS, K2 will mainly cover orbital periods up to ~80 days

### Prospects: Characterized "super-Earths" in their habitable zone

## "Super-Earths" with characterized radius <u>and</u> mass

![](_page_11_Figure_2.jpeg)

H. Rauer, DLR, 2014-3-17 (based on exoplanet.eu)

- TESS, CHEOPS, K2 will mainly cover orbital periods up to ~80 days
- PLATO 2.0: Detect and characterize planets up to the habitable zone of solar-like stars.

## PLATO 2.0 magnitude range

![](_page_12_Figure_1.jpeg)

## The Method

## PLATO 2.0 will focus on bright stars:

- <u>4 11 mag for full</u> <u>characterization</u>
- <u>to 13 mag for Earth-sized</u> <u>planet detection</u>
- <u>to 16 mag for larger planet</u> <u>detection</u>
- Accuracy around solarlike stars for PLATO 2.0:

![](_page_13_Picture_6.jpeg)

![](_page_13_Figure_7.jpeg)

### PLATO 2.0: Exoplanets and Stars

![](_page_14_Picture_1.jpeg)

![](_page_14_Picture_2.jpeg)

Characterization of exoplanets ... needs characterization of stars

- Mass + radius  $\rightarrow$  mean density (gaseous vs. rocky, composition, structure)
- **Orbital distance, atmosphere** (habitability)
- Age

(planet and planetary system evolution)

Stellar mass, radius

(derive planet mass, radius)

- Stellar type, luminosity, activity (planet insolation)
- Stellar age (defines planet age)

![](_page_15_Picture_0.jpeg)

CoRoT and Kepler have demonstrated that the required accuracies can be met

![](_page_15_Figure_2.jpeg)

![](_page_15_Figure_3.jpeg)

Seismic parameters: Radius:  $1.34 \pm 0.02 R_{sun}$ , Mass:  $1.27 \pm 0.03 M_{sun}$ , Age:  $2.37 \pm 0.29 Gyr$  Planets, planetary systems and their host stars evolve.

life

PLATO 2.0 will provide accurate ages for a large sample of planetary systems.

Loss of primary, atmosphere

Stellar radiation, wind and magnetic field

> Cooling, differentiation

differentiation

Secondary atmosphere

(plate)tectonics

> 18 © H. Rauer (DLR)

Formation in proto-planetary disk, migration

Cooling,

## PLATO 2.0 instrument

Two designs studied:

![](_page_17_Picture_2.jpeg)

Multi-telescope approach:

- Large FOV (Large number of bright stars)
- Large total collecting area (provides high sensitivity allowing asteroseismology)
- Redundancy

![](_page_17_Picture_7.jpeg)

- 32 «normal» 12cm cameras, cadence 25 s, white light
- 2 «fast» 12cm cameras, cadence 2.5 s, 2 colours
- dynamical range:  $4 \le m_V \le 16$
- L2 orbit
- Nominal mission duration: 6 years

## PLATO 2.0 instrument

![](_page_18_Picture_1.jpeg)

BreadBoard of one PLATO 2.0 Telescope

- Aspheric feasibility demonstrated
- CaF lenses demonstrated
- Alignment in warm demonstrated

# Field of View

Overlapping line of sight for 4 groups of 8 cameras To increase the FoV

**Optimizing:** 

- No. of stars at given noise level
- No. of stars at given magnitude

![](_page_19_Figure_5.jpeg)

## Baseline observing strategy

- 6 years nominal science operation:
- 2 long pointings of 2-3 years
- step-and-stare phase (2-5 months per pointing)

![](_page_20_Figure_4.jpeg)

#### $\rightarrow$ covers ~50% of the sky

### PLATO 2.0: Number of Light Curves

For the baseline observing strategy:

![](_page_21_Figure_2.jpeg)

## Follow-up time needed

Full follow-up of the expected planet yield from core sample

| Radial<br>velocity<br>precision     | Telescope | Type of objects                      | Example time distribution           |  |
|-------------------------------------|-----------|--------------------------------------|-------------------------------------|--|
| 10m/s                               | 1-2m      | Giant planets on short/medium orbits | 50 nights/yr for<br>6 yrs on 3 tel. |  |
| Follow-up needs world-wide support. |           |                                      |                                     |  |
|                                     |           | medium orbits                        |                                     |  |
| <20cm/s                             | 8m        | Earths/Super-Earths on long orbits   | 40 nights/yr for<br>6 yrs on 1 tel. |  |

Few hardest cases (eg faintest hosts with Earths in the habitable zone) will need E-ELT

#### Total numbers of characterized planets in core sample

Number of characterized planets (**Earth to Neptune mass**) after detailed model of radial velocity efforts and the impact of stellar activity:

![](_page_23_Figure_2.jpeg)

# Planet diversity & comparative planetology

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

PLATO 2.0 will provide planets with:

#### mean density

- $\rightarrow$  composition and structure (rocky, mini-gas)
- $\rightarrow$  constrain atmosphere scale heights
- albedo and its diversity
  - $\rightarrow$  indicative for clouds, hazes

## accurate ages → evolutionary pathways

- characterized host stars
  → incident flux, stellar activity
  - → 1 000 000 high quality light curves of stars
    → PLATO 2.0 data are open access to the community

# • Upcoming meetings

You are welcome to attend the

## PLATO 2.0 Science Conference

## December 3-5, 2014

Catania, Italy