## The PLATO 2.0 Mission



Heike Rauer
Institute for Planetary Research, DLR, Berlin Center for Astronomy and Astrophysics, TU Berlin
and the PLATO Team


## PLATO 2.0

- Selected as ESA M3 mission in February 2014
- Schedule:
- Kick-off Phase B1 in July 2014
- SRR review for mission adoption March 2016
- Launch Q1 2024


## PLATO 2.0

PLATO 2.0 is a survey mission with the prime goals to:

- detect planets down to Earth size
- characterize the bulk planet parameters
o radius (~2\%)
o mass ( $\sim 10 \%$ )
o age (~10\%)
- for a large sample of planets
- for orbital distances up to the habitable zone of solar-like stars
- with well-known parameters of host stars
- provide input for improved stellar models and to galactic science


## Diversity of "super-Earths"



Status:

- Masses vary by a factor of $\sim 4$ (with large errors)
- Radii vary
by a factor of $\sim 3$
$\rightarrow$ PLATO goals:
- Radius: ~2\%
- Mass: ~10\%


## Planet diversity


$\rightarrow$ Need mean densities to separate terrestrial planets from mini-gas planets

## "Super-Earths": diversity and implications on habitability

## Solar System planets are NOT the general rule

- Small exoplanets are very diverse: from Earth-like to mini-gas planets
- Mini-gas planets are likely not habitable
- Silicate-iron planets are prime targets for atmosphere spectroscopy

PLATO 2.0 will provide:
$\rightarrow$ accurate mean densities to identify terrestrial planets
$\rightarrow$ bulk characterize targets for atmosphere spectroscopy follow-up

## Planet diversity

## All planets



PLATO 2.0 will fill the parameter range for long orbital periods

Our knowledge on planet nature is limited to closein planets so far.

Planets with P $>80$ days



## Status: Characterized "super-Earths" in their habitable zone

## Detected super-Earths



- Goal: Detect and characterize superEarths in habitable zones
- Status: few small/light planets in habitable zones detected


## Status: Characterized "super-Earths" in their habitable zone

"Super-Earths" with characterized radius and mass


- Goal: Detect and characterize superEarths in habitable zones
- Status: few small/light planets in habitable zones detected
$\rightarrow$ No „super-Earths" with known mean density in the habitable zone


## Transit missions: What's next?



- K-2 (Kepler 2) (NASA)
observe fields in the ecliptic plane for $\mathbf{\sim 8 0}$ days/field
- CHEOPS (ESA, launch 2017):
follow-up, radii of detected (RV)planets,
- TESS (NASA, launch 2017):
scan the whole sky, $\boldsymbol{\sim 1}$ month/field, ~2\% of sky at poles for 1 year
- PLATO 2.0 (ESA, launch 2024) detect and characterize (density, age) terrestrial planets around solar-like stars up to the habitable zone


## Prospects: Characterized "super-Earths" in their habitable zone

"Super-Earths" with characterized radius and mass


- TESS, CHEOPS, K2 will mainly cover orbital periods up to $\sim 80$ days


## Prospects: Characterized "super-Earths" in their habitable zone

„Super-Earths" with characterized radius and mass


- TESS, CHEOPS, K2 will mainly cover orbital periods up to $\sim 80$ days
- PLATO 2.0: Detect and characterize planets up to the habitable zone of solar-like stars.


## sPLATO 2.0 magnitude range



## The Method

## PLATO 2.0 will focus on bright

## stars:

- 4-11 mag for full characterization
- to 13 mag for Earth-sized planet detection
- to 16 mag for larger planet detection
- Accuracy around solarlike stars for PLATO 2.0:

- PLATO 2.0: Exoplanets and Stars


Characterization of exoplanets ... needs characterization of stars

| - | Mass + radius $\rightarrow$ mean density | - |
| :--- | :--- | :--- |
| (gaseous vs. rocky, composition, structure) | Stellar mass, radius <br> (derive planet mass, radius) |  |
| - Orbital distance, atmosphere | Stellar type, luminosity, activity |  |
| (habitability) | (planet insolation) |  |
| - Age | - Stellar age |  |
| (planet and planetary system evolution) | (defines planet age) |  |

## Asteroseismology

## CoRoT and Kepler have demonstrated that the required accuracies can be met



## no seismic measurement,

0.8 - 5.9 Gyr, $\Delta$ age/age: 75\%

Example: HD 52265 (CoRoT), a GOV type, planet-hosting star, 4 months data

(Gizon et al. 2013)
Seismic parameters: Radius: $1.34 \pm 0.02 R_{\text {sun }}$, Mass: $\quad 1.27 \pm 0.03 \mathrm{M}_{\text {sun }}$, Age: $\quad 2.37 \pm 0.29 \mathrm{Gyr}$

Planets, planetary systems and their host stars evolve.

## PLATO 2.0 will provide accurate

 ages for a large sample of planetary systems.Formation in proto-planetary disk, migration

Loss of primary, atmosphere

Stellar radiation, wind and magnetic field
life

Secondary atmosphere
(plate)tectonics


Cooling, differentiation

## PLATO 2.0 instrument

Two designs studied:


## Multi-telescope approach:

- Large FOV (Large number of bright stars)
- Large total collecting area (provides high sensitivity allowing asteroseismology)
- Redundancy
- 32 «normal» 12cm cameras, cadence 25 s, white light
- 2 «fast» 12cm cameras, cadence 2.5 s, 2 colours
- dynamical range: $4 \leq m_{V} \leq 16$
- L2 orbit
- Nominal mission duration: 6 years



## BreadBoard of one

 PLATO 2.0Telescope

- Aspheric feasibility demonstrated
- CaF lenses demonstrated
- Alignment in warm demonstrated


## Field of View

Overlapping line of sight for 4 groups of 8 cameras
To increase the FoV

Optimizing:

- No. of stars at given noise level
- No. of stars at given magnitude



## - Baseline observing strategy

6 years nominal science operation:

- 2 long pointings of 2-3 years
- step-and-stare phase (2-5 months per pointing)

$\rightarrow$ covers $\sim 50 \%$ of the sky


## PLATO 2.0: Number of Light Curves

For the baseline observing strategy:


## Follow-up time needed

Full follow-up of the expected planet yield from core sample

| Radial <br> velocity <br> precision | Telescope | Type of objects | Example time <br> distribution |
| :--- | :--- | :--- | :--- |
| $10 \mathrm{~m} / \mathrm{s}$ | $1-2 \mathrm{~m}$ | Giant planets on <br> short/medium orbits | 50 nights/yr for <br> 6 yrs on 3 tel. |

## Follow-up needs world-wide support.



Few hardest cases (eg faintest hosts with Earths in the habitable zone) will need E-ELT

## Total numbers of characterized planets in core sample

Number of characterized planets (Earth to Neptune mass) after detailed model of radial velocity efforts and the impact of stellar activity:


## Planet diversity \& comparative planetology




PLATO 2.0 will provide planets with:

- mean density
$\rightarrow$ composition and structure (rocky, mini-gas)
$\rightarrow$ constrain atmosphere scale heights
- albedo and its diversity
$\rightarrow$ indicative for clouds, hazes
- accurate ages
$\rightarrow$ evolutionary pathways
- characterized host stars
$\rightarrow$ incident flux, stellar activity
$\rightarrow 1000000$ high quality light curves of stars
$\rightarrow$ PLATO 2.0 data are open access to the community


## - Upcoming meetings

You are welcome to attend the
PLATO 2.0 Science Conference
December 3-5, 2014
Catania, Italy

