Characterizing cloudy atmospheres with space photometry at optical wavelengths.

bservatoire

Vivien Parmentier Observatoire de la Côte d'Azur → Sagan fellow at UCSC in Sept.

3D clouds in irradiated exoplanets

Atmospheric composition and planet evolution

Tristan GuillotOCA (Nice, France)Adam ShowmanLPL (Tucson, US)Jonathan FortneyUCSC (Santa-Cruz, US)Mathieu HavelCAUP (Porto, Portugal)Julien de WitMIT (Boston, US)Nikole LewisMIT (Boston, US)Mark MarleyNASA Ames (Mountain view, US)B-O.DemoryCambridge (UK)

3D clouds in irradiated exoplanets

3D clouds in irradiated exoplanets

 \rightarrow HD209458b T_{eq0}~ 1500K

Deming et al. 2013 (transmission spectrum)

→ **Kepler-7b** T_{eq0} ~ 1500K but A_g ~0.35 T_{eq} ~1300K Demory et al. 2011, 2013 (albedo, optical phase curve)

 \rightarrow HD189733b T_{eq0}~1200K

Lecavelier des etangs 2008a, Sing et al. 2009, Berdyugina et al. 2011, Sing et al. 2011b, Gibson et al. 2013, Pont et al. 2013, Evans et al. 2013 (transmission, albedo)

3D-model with the MITgcm

- Cubic sphere grid Nx=128 Ny=64 Np=53
- Domain 2µbar-200bars
- Shapiro filter smooths the horizontal grid noise
- Radiative transfer : correlated-k method

3D clouds in irradiated exoplanets

→ **Kepler-7b** T_{eq0} ~ 1500K but A_g ~0.35 T_{eq} ~1300K Demory et al. 2011, 2013 (albedo, optical phase curve)

 \rightarrow HD189733b T_{eq0}~1200K

Lecavelier des etangs 2008a, Sing et al. 2009, Berdyugina et al. 2011, Sing et al. 2011b, Gibson et al. 2013, Pont et al. 2013, Evans et al. 2013 (transmission, albedo)

Temperature field of HD209458b

Temperature field of HD209458b

3D model : modified MITgcm

- We implemented passive tracers in the MITgcm
- In "cloudless" areas they follow the fluid
- In "cloudy" area they additionally rain

 The settling timecale is given by the size of the condensates (0.1/0.5/1/2.5/5/10µm)

 \rightarrow Concerns many planets (day/night contrast inrcreases with T_{eq})

 \rightarrow Concerns many species (TiO, Fe, MgSiO₄ ...)

Cloud abundance at the limb

We expect clouds to be spatially variable

Top cloud pressure is fundamental to quantify the molecular abundances

We predict maximum particle size of ~1µm

Cloud abundance at the limb

Is the gas really condensed at the limb?

Phase mapping of the dayside albedo is necessary

15

3D clouds in irradiated exoplanets

 \rightarrow HD209458b T_{eq0}~ 1500K

Deming et al. 2013 (transmission spectrum)

→ **Kepler-7b** T_{eq0} ~ 1500K but A_g ~0.35 T_{eq} ~1300K Demory et al. 2011, 2013 (albedo, optical phase curve)

 \rightarrow HD189733b T_{eq0}~1200K

Lecavelier des etangs 2008a, Sing et al. 2009, Berdyugina et al. 2011, Sing et al. 2011b, Gibson et al. 2013, Pont et al. 2013, Evans et al. 2013 (transmission, albedo)

Partially cloudy Kepler-7b

Lewis, Parmentier et al. in prep

Partially cloudy Kepler-7b

Partially cloudy Kepler-7b

Lewis, Parmentier et al. in prep

3D clouds in irradiated exoplanets

 \rightarrow HD209458b T_{eq0}~ 1500K

Deming et al. 2013 (transmission spectrum)

→ **Kepler-7b** T_{eq0} ~ 1500K but A_g ~0.35 T_{eq} ~1300K Demory et al. 2011, 2013 (albedo, optical phase curve)

→ HD189733b T_{eq0}~1200K Lecavelier des etangs 2008a, Sing et al. 2009, Berdyugina et al. 2011, Sing et al. 2011b, Gibson et al. 2013, Pont et al. 2013, Evans et al. 2013 (transmission, albedo)

HD189733b : covered by clouds ?

Parmentier et al. in prep

HD189733b : covered by clouds ?

Parmentier et al. in prep

3D clouds in irradiated exoplanets

 \rightarrow HD209458b T_{eq0}~ 1500K Clouds at the limb ? \rightarrow important for transit observations

 \rightarrow **Kepler-7b** T_{eq0}~ 1500K but A_g~0.35 T_{eq}~1300K *Partly cloudy dayside* \rightarrow *longitudinal variations*

 \rightarrow HD189733b T_{eq0}~1200K Partly cloudy dayside \rightarrow latitudinal variations Atmospheric composition and planet evolution

The atmosphere is a valve that determines how much energy can escape from the planet

Temperature profiles : the exemple of TiO

Temperature profiles : the exemple of TiO

Temperature profiles : numerical

Temperature profiles : numerical vs. analytical

Parmentier et al. 2014c – sub.

34

Temperature profiles : numerical vs. analytical

Parmentier et al. 2014c – sub.

Temperature profiles : numerical vs. analytical

Parmentier et al. 2014c – sub.

Radius evolution: TiO vs No TiO

All things being equal, planets with TiO in their atmosphere should be smaller than planets without it.

Radius evolution: TiO vs No TiO

All things being equal, planets with TiO in their atmosphere should be smaller than planets without it.

Are planets with TiO really smaller?

Are planets with TiO really smaller?

40

Are planets with TiO really smaller?

We need better statistics to see this signature

Conclusion

Atmospheric circulation shapes the clouds in a planet atmosphere.

 \rightarrow In hot Jupiters the patterns are global and thus observable by photometric missions.

The atmospheric composition affects the longterm evolution of the planet.

 \rightarrow Statistical studies are needed, photometric missions are necessary.

1D analytical atmospheric model available at: www.oca.eu/parmentier/nongrey

