ENSEMBLE
 ASTEROSEISMOLOGY
 SCALING LAWS
 Josefina Montalbán

credit Christensen-Dalsgaard

credit Christensen-Dalsgaard

Solar-like oscillations

Solar-like oscillations

- periods: minutes to hours

Solar-like oscillations

- periods: minutes to hours
- intrinsically damped, externally forced by turbulent convection

Solar-like oscillations

- periods: minutes to hours
- intrinsically damped, externally forced by turbulent convection
- amplitudes: ppm-tens of ppm

Solar-like oscillations

- periods: minutes to hours
- intrinsically damped, externally forced by turbulent convection
- amplitudes: ppm-tens of ppm
- acoustic modes:
radial and non-radial

Solar-like oscillations

- periods: minutes to hours
- intrinsically damped, externally forced by turbulent convection
- amplitudes: ppm-tens of ppm
- acoustic modes:
radial and non-radial
- in subgiants/giants: g-p mixed modes

HRD OF SOLAR-LIKE PULSATORS BEFORE COROT \& KEPLER

Straka et al. 2006, Carrier et al. 2005, Guenther 2004, Kjeldsen et al. 2003, Di Mauro et al 2002, ChristensenDalsgaard et al. 1995, Kjeldsen et al I995, Provost et al. 2006, Claudi et al. 2005, Eggenberger et al. 2004, Martic et al. 2004, Eggenberger\&Carrier 2006, Bedding et al. 2006, Carrier\&Eggenberger 2006, Bouchy et al. 2005, Bazot et al. 2005, Bedding et al. 200 I Carrier \& Bouchy 200I,2,...

CoRoT: a few bright solar-like pulsators in the seismofield ~20000 giants in the exo-field 4 giants in NGC6633

Kepler: ~500 dwarfs \& subgiants 14000 giants giants in 4 clusters

Chaplin \& Miglio 2013

SOLAR-LIKE PULSATIONS
 radial modes

comb-like spectrum

$$
\begin{aligned}
& \Delta \nu=\left(2 \int \frac{d r}{r}\right)^{-1} \\
& \quad \propto\left(M / R^{3}\right)^{1 / 2} \\
& \nu_{\max } \propto \nu_{\text {cutoff }} \propto g / \sqrt{T_{\text {eff }}}
\end{aligned}
$$

Ulrich 1986
Brown et al. | 99 |
Kjeldsen \& Bedding 1995
Belkacem et al. 2011

SOLAR-LIKE PULSATIONS
 radial modes

comb-like spectrum

$$
\begin{aligned}
& \Delta \nu=\left(2 \int \frac{d r}{r}\right)^{-1} \\
& \quad \propto\left(M / R^{3}\right)^{1 / 2} \\
& \nu_{\max } \propto \nu_{\text {cutoff }} \propto g / \sqrt{T_{\text {eff }}}
\end{aligned}
$$

Ulrich 1986
Brown et al. | 99 |
Kjeldsen \& Bedding 1995
Belkacem et al. 2011

SOLAR-LIKE PULSATIONS
 radial modes

comb-like spectrum
$\Delta \nu=\left(2 \int \frac{d r}{r}\right)^{-1}$
$\propto\left(M / R^{3}\right)^{1 / 2}$
$\nu_{\max } \propto \nu_{\text {cutoff }} \propto g / \sqrt{T_{\text {eff }}}$

Ulrich 1986
Brown et al. | 99 |
Kjeldsen \& Bedding 1995
Belkacem et al. 2011

EVOLUTION OF DWARF AND SUB-GIANT SPECTRUM

Chaplin \& Miglio 2013

SOLAR-LIKE PULSATIONS non-radial modes

Chaplin \& Miglio 2013
gravity/mixed modes: $\Delta P_{\ell}=\frac{2 \pi^{2}}{\sqrt{\ell(\ell+1)}}\left(\int_{r 1}^{r 2} N \frac{d r}{r}\right)^{-1}$

EVOLUTION OF GIANT SPECTRUM

and complexity increases

Chaplin \& Miglio 2013

KIC 12069424

Chaplin \& Miglio 2013

KIC 12069424

KIC 6949816

KIC 6949816

KIC 3100193

KIC 6949816

KIC 3100193

ENSEMBLE SEISMOLOGY

average seismic parameters:

$$
\begin{aligned}
& \Delta v \simeq \sqrt{\frac{M / \mathrm{M}_{\odot}}{\left(R / \mathrm{R}_{\odot}\right)^{3}}} \Delta v \odot \\
& v_{\max } \simeq \frac{M / \mathrm{M}_{\odot}}{\left(R / \mathrm{R}_{\odot}\right)^{2} \sqrt{T_{\text {eff }} / T_{\text {eff, }, \odot}}} v_{\max , \odot} \\
& + \\
& \text { Teff }
\end{aligned}
$$

radius and mass estimates:

$$
\begin{aligned}
& \left(\frac{R}{\mathrm{R}_{\odot}}\right)=\left(\frac{\nu_{\max }}{\nu_{\max , \odot}}\right)\left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-2}\left(\frac{T_{\mathrm{eff}}}{\mathrm{~T}_{\mathrm{eff}, \odot}}\right)^{0.5} \\
& \left(\frac{M}{\mathrm{M}_{\odot}}\right)=\left(\frac{\nu_{\max }}{\nu_{\max , \odot}}\right)^{3}\left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-4}\left(\frac{T_{\mathrm{eff}}}{\mathrm{~T}_{\mathrm{eff}, \odot}}\right)^{1.5}
\end{aligned}
$$

ENSEMBLE ASTEROSEISMOLOGY

- Global parameters (M, R): forward or based in grid of models Mosser et al. 2010 , Kallinger et al 2010 , Hekker et el. I I I I I, Gai et al. 20 II , Basu et al 20 II , Chaplin et al 2014 ..
- Determination of log g spectroscopy $\sigma_{\text {logg }}=0.04$ dex

Gai et al. 20 II, Miglio \& Morel 2012, Creevey et al 20I3, Morel et al. 2014

- Study of stellar populations: simple (stellar cluster) and multiple (Milky Way) Miglio et al 2009, I 3, Hekker et al. 2009, Mosser et al 20IO, I I , Chaplin et al 20 II, Corsaro et al. 20I2, Basu et al. 20II,
- Stellar cluster membership

Stello et al. 2010, 201 I

- Mass loss in the RGB, from clusters

Miglio et al. 2012

- Distance indicators

Miglio et al. 2013

- \longrightarrow age (but model dependent)

AGE FROM STELLAR MASS

- Mass age

GIANTS:

Age $(R G B) \sim \mathbf{T}_{H}$

$$
\mathbf{T}_{\mathrm{H}} \sim \mathrm{M} / \mathrm{L}
$$

$$
L \sim M \eta \quad \eta \sim 3.5
$$

\downarrow
Age(RGB) ~ M-2.5

AGE FROM STELLAR MASS

- Mass \sim age

GIANTS:

Age $(R G B) \sim \mathbf{T}_{H}$

$$
L \sim M \eta \quad \eta \sim 3.5
$$

Age (RGB) $\sim M^{-2.5}$
$M+[F e / H]:$:"chronometer" for evolved stars

AGE FROM STELLAR MASS

Main sequence evolutionary phase

Constraining RGB mass loss

$\underset{\text { Reimers } 1975}{\text { RGB mass }}$ loss rate: $\frac{\mathrm{d} M}{\mathrm{~d} t}=1.2710^{-5} \eta M^{-1} L^{1.5} T_{\text {eff }}^{-2} \quad$ Reimers' "law"
$\operatorname{Mass}(R G B)$ vs $\operatorname{Mass}(R C)$

Miglio et al. 2012
quantitative estimate of integrated RGB mass loss

sTELLAR POPULATIONS

CoRoT LRs: ~ 3000 stars (analysed) Mosser et al. 2010

Kepler data: ~ 14000 stars
Hekker et al. 20I I, Stello et al. 2013

$$
\text { CoRoT LRcO I + LRaO I :~ } 2000
$$ stars with average global parameters

sTELLAR POPULATIONS

20000

15000

10000

5000

Galactic Centre

- LRa01
- LRa02
- LRa03
- LRc01
- LRc02
- LRc03
- Kepler

Differential population studies

observed

Differential distribution of M in
LRcOl et LRaOI

LRc0 I sample older than LRaO I
$\bar{Z}_{\text {LRaOI }}<\bar{Z}_{\text {LRcOI }}$

Differential population studies

observed

Differential distribution of M in
LRcOl et LRaOI \downarrow
LRcOI sample older than LRaO I
$\bar{Z}_{\text {LRaOI }}<\bar{Z}_{\text {LRcol }}$
TRILEGAL

Challenges

Test seismic scaling relations:

$$
\begin{aligned}
& \left(\frac{R}{\mathrm{R}_{\odot}}\right)=\left(\frac{\nu_{\max }}{\nu_{\max , \odot}}\right)\left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-2}\left(\frac{T_{\text {eff }}}{\mathrm{T}_{\text {eff }, \odot}}\right)^{0.5} \\
& \left(\frac{M}{\mathrm{M}_{\odot}}\right)=\left(\frac{\nu_{\max }}{\nu_{\max , \odot}}\right)^{3}\left(\frac{\Delta \nu}{\Delta \nu_{\odot}}\right)^{-4}\left(\frac{T_{\text {eff }}}{\mathrm{T}_{\text {eff }, \odot}}\right)^{1.5}
\end{aligned}
$$

VS
models (Δv) and/or independent measurements of R and M

TESTING SCALING RELATIONS

from models

Depends on: evolutionary state stellar mass

see also White et al. 20I I

TESTING SCALING RELATIONS

from models

Depends on: evolutionary state stellar mass

TESTING SCALING RELATIONS

empirical tests of scaling relations e.g.

- a few nearby/CoRoT dwarfs and giants Bruntt et al. 20 I I, Miglio 201 I , Bedding 201 I
- interferometry

Huber et al. 2012

- Kepler dwarfs+ Hipp parallaxes

Silva Aguirre et al. 2012

- NGC679I: R and M

Miglio et al. 20 I2, Brogaard et al. 20 I 2, Sandquist et al. 2013

- Eclipsing binaries
~ 4\% for Radius
~ 10% for Mass

Challenges

Age estimate: inherently model dependent

need to test stellar models!
can seismology help?

- evolutionary state
- near-core mixing
- RGB mass loss
- ...

Period spacing $\boldsymbol{A G B}$ vs RC

 why is it relevant to determine ev. state of a $\sim 10 R_{\text {sun }}$ giant ?constraints: $\Delta \mathrm{v}, \mathrm{V}_{\text {max }},[\mathrm{Fe} / \mathrm{H}], \mathrm{T}_{\text {eff }}$, ev. state

age estimates using PARAM (as in Da Silva et al. 2006, Nordstrom et al. 2004)

ENSEMBLE ASTEROSEISMOLOGY

 non-radial modes

ENSEMBLE ASTEROSEISMOLOGY non-radial mixed modes

ENSEMBLE ASTEROSEISMOLOGY

 non-radial mixed modes
$\Delta v+v m a x$

period spacing metallicity mixing during $M S$

asymptotic period spacing
mixing during He burning

CONCLUSIONS

Scaling relations have an enormous potential, in particular to study stellar populations, but we need:

- We need to constraint/calibrate the scaling relations, for example EB, parallaxes

expected from Gaia for $R=16$ Cacciari, 2014
- To exploit the potential of scaling relations in the study of APOGEE (talk M. Pinsonneault) stellar populations we need Gaia-ESO Survey (talk M.Valentini) chemical composition GALAH-Hermes @ AAT

Thank you !

