SURFACE-TO-CORE ROTATION IN THE MAIN SEQUENCE STAR KIC 11145123

Don Kurtz
Hideyuki Saio
Masao Takata
Hiromoto Shibahashi
Simon Murphy
Takashi Sekii

ROTATIONAL SPLITTING DIPOLE MODE

$I=1, m=-1$

$I=1, m=0$

$I=1, m=+1$

$$
\delta \omega_{n, l, m}=m\left(1-C_{n, l}\right) \int_{0}^{R} K_{n, l}(r) \Omega(r) d r
$$

Animations courtesy Rich Townsend

P MODES AND G MODES

Aerts, Christensen-Dalgaard, Kurtz 2010, Asteroseismology, Springer

THE SUN

Courtesy Jesper Schou \& Rachel Howe

HD 129929 - B3V

Aerts et al., 2003, Science, 300, 1926

KIC 8366269-5000 K RED GIANT

Beck et al., 2012, Nature, 481, 55

KIC 11145123

G MODES

G MODE SPLITTING

$$
\delta \omega_{n, l, m}=m\left(1-C_{n, l}\right) \int_{0}^{R} K_{n, l}(r) \Omega(r) d r
$$

- For high overtone g modes $\mathrm{C}_{\mathrm{n}, l}$ asymptotically approaches 0.5
- $C_{n, I} \approx I /(I+1)=0.5$ for KIC 11145123 g modes
- This is model independent
- The splitting between the \mathbf{g} mode sectoral $m=+1$ and -1 frequencies measures the "average" rotation rate in the core.
- $P_{\text {core }} \geq 105.13 \pm 0.02$ days
- All mode splittings are equal within the precision of 4 years of data
- There are no second-order effects
- The star is nearly spherical

P MODES

P MODE TRIPLET

P MODE QUINTUPLET

P MODE SPLITTING

$$
\delta \omega_{n, l, m}=m\left(1-C_{n, l}\right) \int_{0}^{R} K_{n, l}(r) \Omega(r) d r
$$

- For the p modes $C_{n, 1}<0.03 \approx 0$
- This is model independent
- The splitting between the p mode frequencies measures the "average" rotation rate near the surface.
- $P_{\text {surface }} \leq 98.57 \pm 0.02$ days
- All mode splittings are equal within the precision of 4 years of data
- There are no second-order effects
- The surface rotates more quickly than the core

HR DIAGRAM AND MODEL TRACKS

ROTATION KERNELS

ROTATION KERNELS

KIC 11145123 -CONCLUSIONS

- We see surface-to-core rotation clearly in a main sequence star for the first time
- KIC 11145123 is nearly a rigid rotator with $P_{\text {rot }} \approx 100 \mathrm{~d}$
- The surface rotates faster than the core
- $P_{\text {surface }} \leq 98.57 \pm 0.02$ days
- $P_{\text {core }} \geq 105.13 \pm 0.02$ days
- A strong angular momentum transport mechanism other than viscosity must be operating
- Angular momentum transport in stars over their entire lifetimes is now an observational science

THE P MODES AND G MODES ARE COUPLED

