KICT1911480: PROBING DEEP INTO THE INTERIOR OF A PULSATING WHITE DWARF STAR

GD1212

Giammichele N., Fontaine G., Brassard P. Université de Montréal Charpinet S. Greiss S. Warwick university

ZZCETI INSTABILITY STRIP

• Why GD1212?

We have data

7.8

8.4

9.0 └── 13500.

Log g

 Simplest of the "complicated" DAVs

 \bigcirc

 $0.4 M_{\odot}$

1.1 M_o

12900.

12300.

 T_{eff} (K)

LIGHT CURVE PROCESSING

Kepler K2 test run 9 days

Table 3: Final list of significant frequencies above 4σ for the 9d run. Bracketted frequencies may be unsure.

Id.	Frequency	σ_f	Period	σ_P	Amplitude	σ_A	Phase	$\sigma_{\rm Ph}$	S/N	Comments
	(μHz)	(µĤz)	(s)	(s)	(%)	(%)	(s)	(s)	1	
										6 G.
f048	20.6931	0.1402	48325.2773	327.3270	0.0301	0.0059	0.2202	0.0270	5.1	t1-t21
f054	25,1616	0.1624	39743.1002	256,5863	0.0259	0.0059	0.5367	0.0313	4.4	t42-t21
f032	32,4511	0.1046	30815.5820	99.2811	0.0402	0.0059	0.5069	0.0200	6.8	f7-f3
015	36.4081	0.0654	27466.4281	49.3249	0.0641	0.0059	0.5414	0.0063	10.9	
f027	[38,1695]	0.0965	[26198.9033]	[66.2164]	[0.0433]	[0.0059]	[0.9670]	0.0095	[7.4]	f2-f10?; blend with f15
f046]	[40.1084]	[0.1342]	[24932.4336]	[83.4495]	[0.0310]	[0.0059]	[0.1985]	[0.0259]	[5.3]	f4-f7?; blend with f15
057	64,7091	0.1666	15453.7724	39.7892	0.0238	0.0056	0.4011	0.0335	4.3	f4-f6 ?
049	69.8447	0.1361	14317.4751	27.8906	0.0292	0.0056	0.6677	0.0139	5.2	f2-f5 ?
053	71.4853	0.1494	13988.8825	29.2276	0.0265	0.0056	0.6006	0.0152	4.8	f4-f1 ?
036	94,5555	0.1028	10575.8013	11.5015	0.0371	0.0054	0.5161	0.0213	6.9	f2-f31 ?
f047]	[100.2178]	[0.1265]	[9978.2649]	[12.5987]	[0.0303]	[0.0054]	[0.4270]	[0.0130]	[5.6]	f5-f1?; blend with f33
033	101.6019	0.1006	9842.3383	9.7465	0.0382	0.0054	0.5418	0.0103	7.1	f31-f21 ?
044	171.8924	0.1091	5817.5941	3.6936	0.0325	0.0050	0.7269	0.0241	6.5	f2-f1 ?
169	641.6091	0.1575	1558,5814	0.3826	0.0181	0.0040	0.0048	0.0433	4.5	
073]	[661,4700]	0.17691	[1511.7843]	[0,4043]	[0.0172]	[0.0043]	[0, 4423]	[0.0460]	[4,0]	several weak peaks around
foral	668 5275]	0 1724	1495 8247	0 38581	0.0179	0 0043	0.3825	0 0442	14 11	 several weak neaks around
0072]	680.2633	0.1554	1470.0190	0.3358	0.0199	0.0044	0.0097	0.0395	4.6	, actual train prime in contra
000	738 4715	0.1696	1354 1484	0.3110	0.0202	0.0048	0.8138	0.0390	42	
204	768 4389	0.1692	1301 3396	0.2866	0.0222	0.0053	0.9265	0.0354	4.2	
101	803 9795	0.1447	1243 8127	0.2239	0.0272	0.0055	0.8632	0.0311	40	
001	807 1185	0.1049	1238 0754	0.1611	0.0375	0.0055	0.1074	0.0233	6.8	
135	811 5749	0.1788	1233.5139	0.2714	0.0375	0.0055	0.0186	0.0200	4.0	
362	011.0740	0.1766	1202.1122	0.2714	0.0220	0.0035	0.9100	0.0575	9.0	
)21	019.9700		1219.0407		0.0556		0.0400		9.0	
01	840.2108		1190.1774		0.2477		0.9957		43.4	
042	[844.8180]	[0.1201]	[1183.6868]	[0.1683]	0.0333	0.0056	[0.1009]	[0.0243]	[5.9]	*; may be linked to f1
007	871.6296		1147.2763		0.0866		0.7558		15.3	
030	874.0884	0.0992	1144.0491	0.1298	0.0406	0.0057	0.8393	0.0209	7.2	•
023	879.8627	0.0827	1136.5410	0.1068	0.0486	0.0057	0.0691	0.0166	8.6	
029	888.5756	0.0946	1125.3967	0.1198	0.0416	0.0055	0.7081	0.0191	7.5	
004	910.4287		1098.3837		0.1513		0.2721		28.7	
031	921.1198	0.0936	1085,6351	0.1103	0.0402	0.0053	0.6656	0.0197	7.6	
005	940.7330		1063.0009		0.1099		0.1926		21.1	
080	954,4381	0.1667	1047,7369	0.1829	0.0223	0.0052	0.4139	0.0354	4.3	•
010	975 3833		1025 2379		0.0740	_	0.5623		14.1	
010	992 3267	0 1021	1007 7326	0 1037	0.0358	0.0052	0.1987	0.0220	7.0	
0.39	1010 9967	o. rogi	007 7649	0.1007	0.0000	0.0002	0.1001	0.0220	97.0	
002	1012.3807		961.1096		0.1840		0.5738		37.0	
040	1043.7635		958.0714		0.0348		0.6009		7.1	-
776	1093.3840	0.1962	914.5918	0.1641	0.0162	0.0045	0.2470	0.0485	3.6	probably higher S/N
f071]	[1145.0845]	[0.1522]	[873.2980]	[0.1161]	[0.0180]	[0.0039]	[0.9228]	[0.0453]	[4.7]	*; may be linked to f34
034	1147.7071		871.3025		0.0380		0.1785		9.9	
011	1166.2026	0.0367	857.4839	0.0270	0.0722	0.0037	0.7412	0.0109	19.3	
059	1177.7694	0.1146	849.0626	0.0826	0.0226	0.0036	0.2073	0.0350	6.2	•
014	1186,3756	0.0394	842,9034	0.0280	0.0643	0.0036	0.9827	0.0123	18.0	
012	1206,6583		828,7351		0.0715		0.7307		21.5	
	1010 9109		896 9970		0.0220		0.4591		0.0	

13 independent modes extracted (for structure)

19 components of rotationally split multiplets (for rotation)

f084	2447.9299	0.1386	408.5084	0.0231	0.0111	0.0022	0.1256	0.0706	5.1
f079	2695,3338	0.1034	371.0116	0.0142	0.0136	0.0020	0.0507	0.0577	6.9
foes	2703.8441	0.0647	369.8438	0.0089	0.0217	0.0020	0.9544	0.0363	11.0

THE FORWARD METHOD

• Comparison:

- observed frequencies
- Theoretical frequencies from static, parameterized models

T _{eff}	Effective temp.				
log g	Surface gravity				
q_{H}	H layer mass				
$q_{_{He}}$	He layer mass				
Core comp.	Homogeneous C-O mix				
Pf ₁	Parameterized param. for the chemical profile at H/He transition				
Pf ₂	Parameterized param. for the chemical profile at He/C-O transition				
Conv.	Convective efficiency (MLT)				

C/O He H

TECHNIQUE: DOUBLE-SCHEME OPTIMISATION

WHAT CAN WE INFER?

• Independent measure of:

- Surface gravity (Mass),
- Temperature,
- Layering: D(H), D(He)

• Extra:

- Bulk core composition
- Internal rotation profile

Solution: Projection log $G - T_{EFF}$ plane

Solution: Projection D(H) - D(He)PLANE

Teff

HOMOGENEOUS VS NON-HOMOGENEOUS

Teff

0

1.50

1.45

1.40

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00

0.95

0.90

0.85

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

WHICH PARTS OF THE STAR CONTRIBUTE THE MOST TO THE PULSATIONS?

• Weight functions:

Determination of the bulk core composition

OC/O = 47-53%

COMPARED TO EVOLUTIONARY MODEL, WHERE DO WE STAND?

• What we find:

• C/O= 47-53%

• Compared to profiles from Salaris et al. (2010)

• C/O = 43-58%

GD1212: ROTATION KERNELS

• Going deep into the interior

GD1212: ROTATIONAL SPLITTINGS

INTERNAL ROTATION PROFILE

Solid-body rotation test

HOW DOES IT COMPARE TO OTHER ZZCETI?

HOW DOES IT COMPARE TO OTHER ZZCETI?

CONCLUSION

• IT WORKS!!

• We have been able to determine for GD1212:

- Mass (Surface gravity)
- Temperature
- Chemical stratification: H/He layering

• Extra:

- Bulk core composition
- Internal rotation profile
- Future prospects:
 - Analysis of other Kepler 1-2 WDs (See Greiss et al. Poster 6)