Star-planiet interections and dynamical evolution of exoplarietary systems

Cilia Damiani
 Post-doc

Laboratoire d'Astrophysique de Marseille

Star-planet interactions

Close-in planets (a<0.15 AU), around MS late-type stars

Star-planet interactions

Close-in planets (a<0.15 AU), around MS late-type stars

- Irradiation
- EUV flux (I-I00nm)
\Rightarrow evaporation

The WASP-12 systems is shrouded in diffuse gas

Haswell et al 2012

The stellar disc is obscured at all observed phases

Star-planet interactions

Close-in planets (a<0.15 AU), around MS late-type stars

- Irradiation
- EUV flux (I-I00nm) \Rightarrow evaporation
- Magnetic filed(s)
- Sub-alfvénic regim, magnetic reconnections possible

Time-dependent MHD simulations of HD 189733

Star-planet interactions

Close-in planets (a<0.15 AU), around MS late-type stars

- Irradiation
- EUV flux (I-I00nm)
\Rightarrow evaporation
- Magnetic filed(s)
- Sub-alfvénic regim, magnetic reconnections possible
- Gravitation
- Tidal torque $\propto a^{-6}$
- Close-in giant planets cannot form in situ
- How did they migrate?
- planet-disc interactions
- planet-planet interactions
- planet-planetesimal disc interactions
- planet-distant star companion (Kozai-Lidov)
- The end of migration is the beginning of tidal interactions

Tidal evolution outcome

Barker \& Ogilvie 2009

Tidal circularization time too coplonara obibitl
$\tau_{e} \approx 16.8 \mathrm{Myr}\left(\frac{Q_{\star}^{\prime}}{10^{6}}\right)\left(\frac{m_{\star}}{M_{\odot}}\right)^{\frac{8}{3}}\left(\frac{M_{J}}{m_{p}}\right)\left(\frac{R_{\odot}}{R_{\star}}\right)^{5}\left(\frac{P_{\text {orb }}}{1 \mathrm{~d}}\right)^{\frac{13}{3}}$

$$
\times\left[\left(f_{1}(e)-\frac{11}{18} \frac{P_{\mathrm{orb}}}{P_{\star}} f_{2}(e)\right)+\frac{Q_{p}^{\prime}}{Q_{\star}^{\prime}}\left(\frac{m_{\star}}{m_{p}}\right)^{2}\left(\frac{R_{p}}{R_{\star}}\right)^{5}\left(f_{1}(e)-\frac{11}{18} f_{2}(e)\right)\right]^{-1}
$$

Tidal alignement time (for circular orbit and small inclination)
$\tau_{i} \approx 70 \mathrm{Myr}\left(\frac{Q_{\star}^{\prime}}{10^{6}}\right)\left(\frac{m_{\star}}{M_{\odot}}\right)\left(\frac{M_{J}}{m_{p}}\right)^{2}\left(\frac{R_{\odot}}{R_{\star}}\right)^{3}\left(\frac{P_{\text {orb }}}{1 \mathrm{~d}}\right)^{4} \frac{12.5 \mathrm{~d}}{P_{\star}}\left[1-\frac{P_{\text {orb }}}{2 P_{\star}}\left(1-\frac{I \Omega}{h \mu}\right)\right]^{-1}$

Tidal inspiral time (neglecting tides in the planet and for circular and co-planar orbit)

$$
\tau_{a} \approx 12.0 \mathrm{Myr}\left(\frac{Q_{\star}^{\prime}}{10^{6}}\right)\left(\frac{m_{\star}}{M_{\odot}}\right)\left(\frac{M_{J}}{m_{p}}\right)\left(\frac{P_{\mathrm{orb}}}{1 \mathrm{~d}}\right)^{\frac{13}{3}}\left(1-\frac{P_{\mathrm{orb}}}{P_{\star}}\right)^{-1}
$$

Tidal evolution outcome

Barker \& Ogilvie 2009

Tidal circularization time floc coplanora orbitl|
$\tau_{e} \approx 16.8 \mathrm{Myr}\left(\frac{Q_{\star}^{\prime}}{10^{6}}\right)\left(\frac{m_{\star}}{M_{\odot}}\right)^{\frac{8}{3}}\left(\frac{M_{J}}{m_{p}}\right)\left(\frac{R_{\odot}}{R_{\star}}\right)^{5}\left(\frac{P_{\text {orb }}}{1 \mathrm{~d}}\right)^{\frac{13}{3}}$

$$
\times\left[\left(f_{1}(e)-\frac{11}{18} \frac{P_{\text {orb }}}{P_{\star}} f_{2}(e)\right)+\frac{Q_{p}^{\prime}}{Q_{\star}^{\prime}}\left(\frac{m_{\star}}{m_{p}}\right)^{2}\left(\frac{R_{p}}{R_{\star}}\right)^{5}\left(f_{1}(e)-\frac{11}{18} f_{2}(e)\right)\right]^{-1}
$$

$\tau_{e} \approx 4 \mathrm{Myr}$, for $e=0.4$ and $P_{\text {orb }}=3 \mathrm{~d}$
Tidal alignement time for criculucr obitiond smoll indination)
$\tau_{i} \approx 70 \mathrm{Myr}\left(\frac{Q_{\star}^{\prime}}{10^{6}}\right)\left(\frac{m_{\star}}{M_{\odot}}\right)\left(\frac{M_{J}}{m_{p}}\right)^{2}\left(\frac{R_{\odot}}{R_{\star}}\right)^{3}\left(\frac{P_{\text {orb }}}{1 \mathrm{~d}}\right)^{4} \frac{12.5 \mathrm{~d}}{P_{\star}}\left[1-\frac{P_{\text {orb }}}{2 P_{\star}}\left(1-\frac{I \Omega}{h \mu}\right)\right]^{-}$
$\tau_{i} \approx 6 \mathrm{Gyr}$, for $P_{\text {orb }}=3 \mathrm{~d}$ and $P_{\star}=12.5 \mathrm{~d}$
Tidal inspiral time (neglecting tides in the planet and for circular and co-planar orbit)
$\tau_{a} \approx 12.0 \mathrm{Myr}\left(\frac{Q_{\star}^{\prime}}{10^{6}}\right)\left(\frac{m_{\star}}{M_{\odot}}\right)\left(\frac{M_{J}}{m_{p}}\right)\left(\frac{P_{\text {orb }}}{1 \mathrm{~d}}\right)^{\frac{13}{3}}\left(1-\frac{P_{\text {orb }}}{P_{\star}}\right)^{-1}$
$\tau_{a} \approx 2 \mathrm{Gyr}$, for $P_{\text {orb }}=3 \mathrm{~d}$ and $P_{\star}=12.5 \mathrm{~d}$

Observations

Observations

Semi-Major Axis [Astronomical Units (AU)]

- How efficient is tidal dissipation?
- observational constraints:

Jackson et al 2008, Matsumura et al 2008, Deleuil et al 2012, Carone \& Patzold 2007, Lanza et al 201 I...
\Rightarrow See next talk

Excentricity

Origin?

planet-planet scattering (Rasio \& Ford I996, Weidenschilling \& Marzari 1996)

Excentricity

Origin?

Planet-planet scattering \& tidal círcularization

 (Nagasawa et al 2008)

$$
Q_{p}^{\prime} \sim 10^{6}-10^{7}
$$

Role of angular momentum loss

- G-type stars loose angular momentum from their magnetized wind, F-type stars too but less so
- The dynamical evolution of orbital elements is driven by the resultant of the wind torque and the tidal torque

Role of angular momentum loss

- G-type stars loose angular momentum from their magnetized wind, F-type stars too but less so
- The dynamical evolution of orbital elements is driven by the resultant of the wind torque and the tidal torque
- The wind efficency dependance on stellar parameters is not well known but
\Rightarrow Could explain the spread in excentricity (Dobbs-Dixon et al 2004)
\Rightarrow Could explain the spin/orbit misalignement (Dawson 2014)
\Rightarrow Could explain the delay of the tidal decay (Damiani et al 2014)

Conchusion

- Understanding star-planet interaction is a necessary step to confront observations and predictions of formation/migration models
- For hot-Jupiters around late-type stars the magnetized wind torque can be comparable (and opposite) to the tidal torque
- By providing accurate masses, radii and orbital parameters, CoRoT and Kepler have helped put constraints on tidal dissipation efficency and magnetic braking
- Better ages and stellar physics are essential to understand exoplanetary systems dynamics (we need PLATO)

Thenk you!

Damiani \& Lanza, under revision

