Dynamic young stars and their disks: a temporal view

Ann Marie Cody, IPAC/Caltech

THANKS TO MANY COLLABORATORS...

At Caltech: Lynne Hillenbrand, John Stauffer, Luisa Rebull, John Carpenter, Peter Plavchan, Krzysztof Findeisen

And many other institutions: The CSI 2264 team: csi2264.ipac.caltech.edu

WHAT'S MISSING FROM OUR PICTURE OF YOUNG STARS AND THE INNER DISK?

DISK STRUCTURE

DUST PROPERTIES

STAR-DISK CONNECTION

Long et al. (2007)

WE CAN USE VARIABILITY TO MAP DYNAMICS OF ACCRETION AND THE INNER DISK

A REVOLUTION IN TIME SERIES MONITORING OF YOUNG STARS

CoRoT

MOST

?

INFRARED

A REVOLUTION IN TIME SERIES MONITORING OF **YOUNG STARS**

Kepler/K2

CoRoT

MOST

INFRARED

A REVOLUTION IN TIME SERIES MONITORING OF YOUNG STARS

COORDINATED SYNOPTIC INVESTIGATION OF NGC 2264

- ➢ Spitzer: 30 days, 3.6-4.5 µm
- CoRoT: 40 days, optical
- Chandra/ACIS: 300ks (3.5 days)
- MOST: 40 days, optical
- VLT/Flames: ~20 epochs
- Ground-based monitoring U-K bands: ~3 months

THE TARGET: NGC 2264

- Distance ~ 760 pc
- Age ~ 2-4 Myr
- Known members: ~1500
- Large photometric & spectroscopic database
- Many stars with disks

A ZOO OF LIGHT CURVES

DISK-BEARING STARS: UNEXPLAINED PERIODIC BEHAVIOR

QUASI-PERIODIC FLUX DIPS: DISK BLOBS OR WARPS

COROT DATA REVEALS FLUX EVENTS THAT MAY BE ACCRETION BURSTS

→ These objects have preferentially high UV excesses and $H \alpha$ emission indicative of strong accretion.

Stauffer, Cody+ 2014

AT LEAST 10% OF DISK-BEARING STARS SHOW HIGH-AMPLITUDE BEHAVIOR IN THE IR ONLY

WHAT HAVE WE LEARNED?

INNER DISK STRUCTURE

- >Azimuthal asymmetries common
- >Changes on day to week timescales

STAR-DISK CONNECTION

>We are likely observing unsteady accretion flow, including bursts

DUST PROPERTIES

Obscuration events suggest extinction properties quite different from ISM material, and may depend on stellar mass

CLASSES CAN NOW BE SELECTED STATISTICALLY!

Cody et al. 2014

NEW LIGHT CURVE CLASSES FORFlux AsymmetryDISK BEARING STARS

LIGHT CURVE CLASSES: PRIOR TO THE SPACE PHOTOMETRY REVOLUTION

Deriodia	Amoriodia
Periodic	Aperiodic
Eclipsing binaries	UX Ori stars

HOW CAN WE TRANSLATE LIGHT CURVE BEHAVIOR INTO PHYSICS?

Classical T Tauri stars from Herbst et al. (1994)

WHAT COULD BE CAUSING INFRARED VARIABILITY?

WHAT COULD BE CAUSING INFRARED VARIABILITY ?

Changes in inner disk scale height may be responsible.

Hirose & Turner (2011) Flaherty et al. (2012) Ke, Huang & Lin (2012)

LOOKING TOWARD THE FUTURE

- Thanks to CoRoT and Spitzer, we now know that not only are young stars highly variable, but so are their disks!
- Some of the infrared variability could be from reprocessed starlight... but in many cases it doesn't correlate at all with stellar variations!
- Changes in height of the inner disk rim are one potential mid-infrared variability mechanism, but other explanations await.
- We have developed a new light curve classification scheme which can now be applied to additional datasets
- Stay tuned for further results from the CSI project, as well as new monitoring with K2

CAN WE DETECT DIFFERENT ACCRETION REGIMES PHOTOMETRICALLY?

M. Romanova

EVIDENCE THAT SHORT DURATION BURSTS ARE DUE TO STOCHASTIC ACCRETION

These objects have preferentially high UV excesses and H α emission indicative of strong accretion.

BURST DURATIONS: 0.1-1 DAY

WHERE ARE THE HOTSPOT DOMINATED VARIABLES?

SUMMARY

Using high precision, high cadence space-based time series data, we have identified a collection of accreting stars that display rapid (<1 day) flux bursts in their optical light curves.

The correlation of these light curves with large UV excesses suggests that these are the **most heavily** accreting stars in the cluster.

These results concur with the recent simulations of Romanova et al. and signal a shift from the paradigm of steady accretion flow along stable funnels.

 $H\alpha$ profiles

ZOOM IN ON A FLUX BURST

CLASSES CAN NOW BE SELECTED STATISTICALLY!

Cody et al. 2014

THE SPECTRUM OF LIGHT CURVE FLUX ASYMMETRY

CLASSIFICATION OF VARIABILITY: THE PICTURE PRIOR TO 2000

Herbst et al. (1994) paradigm:

I. Periodic-Spots on the stellar surface

> II. Irregular-Variable accretion

III. Early type variables (K1-Ao)-Circumstellar obscuration?