The first low-mass, pre-main sequence eclipsing binary with evidence of a circumbinary disk

Ed Gillen University of Oxford

Credit: NASA

Suzanne Aigrain, Amy McQuillan, Simon Hodgkin, Jerome Bouvier, Silvia Alencar, Caroline Terquem, John Southworth, Ann Marie Cody, Neale Gibson, Monika Lendl, Maria Morales Calderon, Favio Favata, John Stauffer, Guisi Micela & Davide Gandolfi

10th July 2014 CoRoT3 - KASC7: The Space Photometry Revolution

Credit: cartage.org

Credit: cartage.org

Detached, double-lined eclipsing binaries (EBs):

Credit: cartage.org

- Detached, double-lined eclipsing binaries (EBs):
 - From photometry and spectroscopy:
 - Masses
 - Radii
 - Luminosities
 - + coevality and shared metallicity
 - Constrain models of stellar evolution

(e.g. Andersen 1991; Torres et al. 2010)

Credit: cartage.org

- Detached, double-lined eclipsing binaries (EBs):
 - From photometry and spectroscopy:
 - > Masses
 - Radii
 - Luminosities
 - + coevality and shared metallicity
 - Constrain models of stellar evolution

(e.g. Andersen 1991; Torres et al. 2010)

Credit: cartage.org

- Detached, double-lined eclipsing binaries (EBs):
 - From photometry and spectroscopy:
 - > Masses
 - Radii
 - Luminosities
 - + coevality and shared metallicity
 - Constrain models of stellar evolution
 - (e.g. Andersen 1991; Torres et al. 2010)
 - Many constraints on main sequence
 BUT very few on pre-main sequence (PMS)

Credit: cartage.org

- Detached, double-lined eclipsing binaries (EBs):
 - From photometry and spectroscopy:
 - Masses
 - Radii
 - Luminosities
 - + coevality and shared metallicity
 - Constrain models of stellar evolution
 - (e.g. Andersen 1991; Torres et al. 2010)
 - Many constraints on main sequence
 BUT very few on pre-main

sequence (PMS)

- Desire for a set of coeval PMS EBs
 - Ied CoRoT to observe NGC 2264 (3 Myr)

- Gaussian Process (GP)
 - model the LC by parameterising the covariance between flux measurements

- Gaussian Process (GP)
 - model the LC by parameterising the covariance between flux measurements

- Gaussian Process (GP)
 - model the LC by parameterising the covariance between flux measurements
- JKTEBOP (Southworth et al. 2004)

- Gaussian Process (GP)
 - model the LC by parameterising the covariance between flux measurements
- JKTEBOP (Southworth et al. 2004)

Parameter	Value
$\mathrm{SB}_\mathrm{sec}/\mathrm{SB}_\mathrm{pri}$	$0.871\substack{+0.037\\-0.035}$
$(\mathbf{R_{pri}}+\mathbf{R_{sec}})/\mathbf{a}$	$0.2198\substack{+0.0017\\-0.0018}$
$ m R_{sec}/ m R_{pri}$	$0.854\substack{+0.058\\-0.061}$
i (°)	$85.09 {}^{+0.16}_{-0.11}$
P (days)	3.8745746 ± 0.0000014
$e\cos\omega$	$0.00050\substack{+0.00029\\-0.00028}$
$e\sin\omega$	$-0.0049\substack{+0.0077\\-0.0075}$

Instrument	Resolution	$\lambda { m range} ({ m \AA})$	No. of spectra
Spectral Type			
Calar Alto 2.2m / Cafos	$\sim 7{ m \AA}$	\sim 4600 $-$ 7700	1
RVs			
VLT / FLAMES	$ m R \sim 17000$	$\sim 6440-6820$	15
WHT / ISIS	$ m R \sim 12000$	$\sim 7850-8900$	7
INT / IDS	$ m R \sim 9300$	$\sim 7650-9300$	3

Model the RV orbit
 MCMC with LC constraints

Model the RV orbit
 MCMC with LC constraints

•
$$V_{sys}$$
 = 19.4 ± 0.3 km s⁻¹
Cluster = 22 ± 3.5 km s⁻¹

> In agreement

Model the RV orbit
 MCMC with LC constraints

•
$$V_{sys}$$
 = 19.4 ± 0.3 km s⁻¹
Cluster = 22 ± 3.5 km s⁻¹

strong evidence
 for cluster membership

Deriving masses and radii

- Combining LC and RV information
 - RVs + i from LC:
 Mass and semi-major axis
 - Semi-major axis + LC info:
 Radii

Parameter	Primary	Secondary	
Mass	$0.668 {}^{+0.012}_{-0.011}$	$0.4953 \begin{array}{c} +0.0073 \\ -0.0072 \end{array}$	${ m M}_{\odot}$
Radius	$1.295 {}^{+0.040}_{-0.037}$	$1.107 \ \substack{+0.044 \\ -0.050}$	$ m R_{\odot}$
Semi-major axis	10.921	1 ± 0.056	$ m R_{\odot}$

Deriving masses and radii

- Combining LC and RV information
 - RVs + i from LC:
 Mass and semi-major axis
 - Semi-major axis + LC info:
 Radii

Parameter	Primary	Secondary	
Mass	$0.668 {}^{+0.012}_{-0.011}$	$0.4953 \begin{array}{c} +0.0073 \\ -0.0072 \end{array}$	${ m M}_{\odot}$
Radius	$1.295 {}^{+0.040}_{-0.037}$	$1.107 {}^{+0.044}_{-0.050}$	$ m R_{\odot}$
Semi-major axis	10.921	1 ± 0.056	$ m R_{\odot}$

Deriving masses and radii

- Combining LC and RV information
 - RVs + i from LC:
 Mass and semi-major axis
 - Semi-major axis + LC info:
 Radii

Parameter	Primary	Secondary	
Mass	$0.668 {}^{+0.012}_{-0.011}$	$0.4953 \ {}^{+0.0073}_{-0.0072}$	${ m M}_{\odot}$
Radius	$1.295 \ _{-0.037}^{+0.040}$	$1.107 {}^{+0.044}_{-0.050}$	${ m R}_{\odot}$
Semi-major axis	10.921	1 ± 0.056	$ m R_{\odot}$

Comparing to different sets of isochrones

Data	Passbands	Reference
SDSS	ugriz	Abazajian et al. 2009; Adelman-McCarthy et al. 2009
2MASS	JHK	Cutri et al. 2003
Spitzer/IRAC	[3.6] - [8.0]	Sung et al. 2009
Spitzer/MIPS	$24\mu{ m m}$	http://archive.spitzer.caltech.edu/
Herschel/PACS	$70~\&~160~\mu{ m m}$	$http://herschel.esac.esa.int/Science_Archive$

Data	Passbands	Reference
SDSS	ugriz	Abazajian et al. 2009; Adelman-McCarthy et al. 2009
2MASS	JHK	Cutri et al. 2003
Spitzer/IRAC	[3.6] - [8.0]	Sung et al. 2009
Spitzer/MIPS	$24\mu{ m m}$	http://archive.spitzer.caltech.edu/
Herschel/PACS	$70~\&~160~\mu{ m m}$	$http://herschel.esac.esa.int/Science_Archive$

Mid-IR excess cannot be explained by stars (even heavily spotted stars of any temperature)

Data	Passbands	Reference
SDSS 2MASS	ugriz JHK	Abazajian et al. 2009; Adelman-McCarthy et al. 2009 Cutri et al. 2003
Spitzer/IRAC	[3.6] - [8.0]	Sung et al. 2009
Spitzer/MIPS	$24\mu{ m m}$	http://archive.spitzer.caltech.edu/
Herschel/PACS	$70~\&~160~\mu{ m m}$	$http://herschel.esac.esa.int/Science_Archive$

Mid-IR excess cannot be explained by stars (even heavily spotted stars of any temperature)

Data	Passbands	Reference
SDSS	ugriz	Abazajian et al. 2009; Adelman-McCarthy et al. 2009
2MASS	JHK	Cutri et al. 2003
Spitzer/IRAC	[3.6] - [8.0]	Sung et al. 2009
Spitzer/MIPS	$24\mu{ m m}$	http://archive.spitzer.caltech.edu/
Herschel/PACS	$70~\&~160~\mu{ m m}$	$http://herschel.esac.esa.int/Science_Archive$

Data	Passbands	Reference
SDSS	ugriz	Abazajian et al. 2009; Adelman-McCarthy et al. 2009
2MASS	JHK	Cutri et al. 2003
Spitzer/IRAC	[3.6] - [8.0]	Sung et al. 2009
Spitzer/MIPS	$24\mu\mathrm{m}$	http://archive.spitzer.caltech.edu/
Herschel/PACS	$70~\&~160~\mu{ m m}$	$http://herschel.esac.esa.int/Science_Archive$

Data	Passbands	Reference
SDSS	ugriz	Abazajian et al. 2009; Adelman-McCarthy et al. 2009
2MASS	JHK	Cutri et al. 2003
Spitzer/IRAC	[3.6] - [8.0]	Sung et al. 2009
Spitzer/MIPS	$24\mu{ m m}$	http://archive.spitzer.caltech.edu/
Herschel/PACS	$70~\&~160~\mu{ m m}$	$http://herschel.esac.esa.int/Science_Archive$

- Very low mass of dust required
 - ▶ 1 x 10⁻¹³ M_☉
 - Accretion streams from a circumbinary disk?
 - (e.g. Shi et al. 2012)

Data	Passbands	Reference
SDSS	ugriz	Abazajian et al. 2009; Adelman-McCarthy et al. 2009
2MASS	JHK	Cutri et al. 2003
Spitzer/IRAC	[3.6] - [8.0]	Sung et al. 2009
Spitzer/MIPS	$24\mu\mathrm{m}$	http://archive.spitzer.caltech.edu/
Herschel/PACS	$70~\&~160~\mu{ m m}$	$http://herschel.esac.esa.int/Science_Archive$

- Very low mass of dust required
 - ▶ 1 x 10⁻¹³ M_☉
 - Accretion streams from a circumbinary disk?
 - (e.g. Shi et al. 2012)

Data	Passbands	Reference
DSS	ugriz	Abazajian et al. 2009; Adelman-McCarthy et al. 2009
MASS	JHK	Cutri et al. 2003
Spitzer/IRAC	[3.6] - [8.0]	Sung et al. 2009
Spitzer/MIPS	$24\mu{ m m}$	http://archive.spitzer.caltech.edu/
Herschel/PACS	$70~\&~160~\mu{ m m}$	$http://herschel.esac.esa.int/Science_Archive$

- Very low mass of dust required
 - ▶ 1 x 10⁻¹³ M_☉
 - Accretion streams from a circumbinary disk?
 - (e.g. Shi et al. 2012)

need rapid spot evolution

- Variability due to:
 - Occultation of star(s) by material at the inner edge, or in the central cavity, of the circumbinary disk???

Cold spot = 3000K, ~15% of stellar surface

Cold spot = 3000K, ~15% of stellar surface

Cold spot = 3000K, ~15% of stellar surface

- Hot spot = 5000K, $\sim 2\%$ of stellar surface

Cold spot = 3000K, ~15% of stellar surface
 Hot spot = 5000K, ~2% of stellar surface / Dust Obscuration, e.g. ~1µm

Cold spot = 3000K, ~15% of stellar surface

Colour-magnitude plots

- Unique, low-mass PMS EB
 - Solved fundamental parameters
 - Using Gaussian process regression methods
 - > Constrains sparsely populated region of the mass-radius plane
 - > Evidence for circumbinary material
 - > Emission from hot dust in the central cavity of a circumbinary disk

See Gillen et al. A&A 562 A50

- Unique, low-mass PMS EB
 - Solved fundamental parameters
 - Using Gaussian process regression methods
 - > Constrains sparsely populated region of the mass-radius plane
 - Evidence for circumbinary material
 - > Emission from hot dust in the central cavity of a circumbinary disk

See Gillen et al. A&A 562 A50

- Out-of-eclipse variability + colour-magnitude trends
 More than one origin to the variability
 - More than one origin to the variability

- Unique, low-mass PMS EB
 - Solved fundamental parameters
 - Using Gaussian process regression methods
 - > Constrains sparsely populated region of the mass-radius plane
 - Evidence for circumbinary material
 - > Emission from hot dust in the central cavity of a circumbinary disk

See Gillen et al. A&A 562 A50

- Out-of-eclipse variability + colour-magnitude trends
 - More than one origin to the variability
 - K2 has been approved
 - Will observe SFRs and young clusters of various ages

- Unique, low-mass PMS EB
 - Solved fundamental parameters
 - Using Gaussian process regression methods
 - > Constrains sparsely populated region of the mass-radius plane
 - Evidence for circumbinary material
 - > Emission from hot dust in the central cavity of a circumbinary disk

See Gillen et al. A&A 562 A50

- Out-of-eclipse variability + colour-magnitude trends
 - More than one origin to the variability
 - K2 has been approved
 - Will observe SFRs and young clusters of various ages

Thank You