Formation and evolution of planetary systems:

What have we learnt from transit methods?

Clément Baruteau

CNRS / IRAP, Toulouse

CoRoT & KASC joint symposium, Toulouse

8 July 2014

Planet formation & evolution: transits highlights

Image: Misaligned hot Jupiters

 \rightarrow high-eccentricity migration, tides

Close-in, compact multiplanet systems

 \rightarrow in situ growth vs. disc migration

Circumbinary planets

 \rightarrow "extreme" planet formation

Planets around post main sequence stars

 \rightarrow impact of stellar evolution on close-in planets?

Talk outline

Image: Misaligned hot Jupiters

 \rightarrow high-eccentricity migration, tides

Close-in, compact multiplanet systems

 \rightarrow in situ growth vs. disc migration

□ Circumbinary planets
→ "extreme" planet formation

 \Box Planets around post main sequence stars \rightarrow impact of stellar evolution on close-in planets?

Rossiter-MacLaughlin effect

e.g., Winn+ 2005

Planet-starspot crossings

e.g., Sanchis-Ojeda+ 2011

Constraining true obliquity (ψ) with stellar spin axis angle (i_s)
 e.g., Huber+ 2013, Chaplin+ 2013

OBSERVATIONS

□ (Why) do **hot** Jupiters around **hot** stars tend to have **high obliquities?**

OBSERVATIONS

MODELS

Disc migration is a natural source of aligned hot Jupiters

→ disc misaligned by nearby stars? Bate+ 2010, Batygin 2012

 \rightarrow tidal flip of stellar axis? Cebron+ 2013, Barker & Lithwick 2014

(Why) do **hot** Jupiters around **hot** stars tend to have **high obliquities**?

OBSERVATIONS

(Why) do hot Jupiters around hot stars tend to have high obliquities?

Disc migration is a natural source of aligned hot Jupiters

→ disc misaligned by nearby stars? Bate+ 2010, Batygin 2012

 \rightarrow tidal flip of stellar axis? Cebron+ 2013, Barker & Lithwick 2014

High-eccentricity migration followed by tidal circularization is a natural source of misaligned hot Jupiters

 \rightarrow can <u>all</u> hot Jupiters form this way?

Triaud+ 2010, Albrecht + 2012, but see Rogers & Lin 2013, Lai 2012

□ Disc misaligned by nearby stars

□ High-eccentricity migration + tides

□ Disc misaligned by nearby stars

□ High-eccentricity migration + tides

 \rightarrow disc migration needed to account for number of aligned hot Jupiters.

 \rightarrow observations cannot (yet) distinguish between misalignement mechanisms

OBSERVATIONS

 \rightarrow 836 planets in 335 systems 66% of 2 planets, 22% of 3, 12% of 4 and more

 Many planet pairs are *not* in resonance, but those near resonances tend to have period ratios slightly greater than resonant

OBSERVATIONS

 \rightarrow 171 planets in 68 systems 66% of 2 planets, 23% of 3, 11% of 4 and more

□ Same trend for RV-detected multiple systems?

OBSERVATIONS

 \rightarrow 836 planets in 335 systems 66% of 2 planets, 22% of 3, 12% of 4 and more

OBSERVATIONS

 \rightarrow 836 planets in 335 systems 66% of 2 planets, 22% of 3, 12% of 4 and more

exoplanets.org (06/2014)

 Many planet pairs are *not* in resonance, but those near resonances tend to have period ratios slightly greater than resonant

□ In-situ growth of planet embryos

Hansen & Murray 2013; see also Raymond & Cossou 2014 and talk by Elisa Quintana

OBSERVATIONS

 \rightarrow 836 planets in 335 systems 66% of 2 planets, 22% of 3, 12% of 4 and more

exoplanets.org (06/2014)

□ Many planet pairs are *not* in resonance, but those near resonances tend to have period ratios slightly greater than resonant

MODELS

□ In-situ growth of planet embryos

□ Tidal dissipation of close-in resonant planetary systems Papaloizou 2011, Lithwick & Wu 2012, ...

OBSERVATIONS

 \rightarrow 836 planets in 335 systems 66% of 2 planets, 22% of 3, 12% of 4 and more

data extracted from exoplanets.org (06/2014)

□ Many planet pairs are *not* in resonance, but those near resonances tend to have period ratios slightly **greater** than resonant

□ In-situ growth of planet embryos

□ Tidal dissipation of close-in resonant planetary systems Papaloizou 2011, Lithwick & Wu 2012, ...

OBSERVATIONS

 \rightarrow 836 planets in 335 systems 66% of 2 planets, 22% of 3, 12% of 4 and more

Many planet pairs are *not* in resonance, but those near resonances tend to have period ratios slightly greater than resonant

MODELS

□ In-situ growth of planet embryos

Tidal dissipation of close-in resonant planetary systems

 Disc-migration of partial gapopening planets
 Baruteau & Papaloizou 2013

Formation and evolution of planetary systems: what have we learnt from transit methods?

Many mechanisms contribute to the orbital evolution of planetary systems

 \rightarrow disc and high-eccentricity migrations, interactions with host and nearby stars all play some role.

□ Importance of stellar evolution in planetary evolution

□ More observations to constrain evolution models \rightarrow CHEOPS (2017), TESS (2017), PLATO (2024)...