The APOKASC Catalog: Spectroscopic, Asteroseismic, and Rotational Data for a Large Sample of Kepler Stars

Marc Pinsonneault Ohio State University

The APOKASC Collaboration

The Need for Precision Stellar Astrophysics Origins Questions Planet Formation - Structure Formation Complex Observational Patterns: Things Move! \Rightarrow Precise Data Needed \Rightarrow Need Better Stellar Physics

APOGEE at a Glance

Slide: GZ

- The Apache Point Observatory Galactic Evolution Experiment
- The 4th (and final) SDSS-III project (2011 2014)
- A high-resolution, high signal-to-noise spectroscopic survey
- **Operates in the near-infrared** (H band): 1.51-1.68 μm
- **Targeted** $\sim 10^5$ **RG stars** sampling the bulge, disk(s), and halo(es)
- DR10: T_{eff}, [M/H], log g, [a/Fe]; 15 elements in progress

More numbers!

- S/N = 100 + / pixel
- R ~ 22,500
- 300 fibers at a time, 7 deg² FOV
- RV precision: <0.1 0.5 km/s
- Abundance precision: <0.1 dex

APOGEE + Asteroseismology

- APOGEE-Kepler Asteroseismology Collaboration (APOKASC)
 - 10,000 stars: giants with good log(g), planet host candidates, cool dwarfs with good rotations, etc.

- Seismically derived parameters included in DR10!
- Also overlap with CoRoT targets

Slide: GZ

Automated Pipeline Analysis Boutique analysis of 100,000 targets...NO. Automated fitting algorithm (FERRE) for the entire H band spectrum Ex post facto calibration of results against independent measurements – Star cluster members Asteroseismic log g

Calibrating the Pipeline: Temperatures

Calibrating the Pipeline: Metallicities

Calibrating the Pipeline: Surface Gravity

APOGEE: 100K Red Giant Spectra

Two Major Impacts of Asteroseismology

- We can measure fundamental properties (mass, radius, age, rotation) in bulk stellar populations
- Extremely precise surface gravities are a natural product
- We have entirely new categories of stellar observables
 - Surface CZ depth
 - He ionization
 - Core rotation
 - Core mass and density

Spectroscopy + Asteroseismology

2Gether 4Ever

Waves are Generated by Turbulence in Stars

Kepler mission: 150,000 stars monitored

Milky Way Galaxy

Solar-like Oscillations in Kepler

 v_{max}

Rotational Splittings

16 Cyg A Metcalfe et al. 2012

Pure p-mode pattern

The observed MS pattern is a strong function of log g

From Chaplin & Miglio 2013

Scaling Relations for Bulk Populations

- Two most basic observables:
 - Frequency of maximum power

Mean frequency spacing

$$\frac{M}{M_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$
$$\frac{R}{R_{\odot}} \simeq \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}.$$

Two Tests of the Radius Scale

Hipparcos Parallaxes + IRFM Teff ⇒Infer R, Compare with Seismology Aguirre et al. 2012

Interferometric Radii: Compare with Seismology Huber et al. 2012

FIG. 1.— H-R diagram with the position of all stars calculated using spectroscopy, photometry and Hipparcos parallaxes. Solar metallicity BaSTI evolutionary tracks from 0.8-2.6 M_{\odot} in steps of 0.01 M_{\odot} are shown as grey lines. The dashed line marks the approximate location of the cool edge of the instability strip.

Good Radius Agreement!

Testing the Scaling Relations: NGC 6791 (Miglio et al. 2012)

- We have eclipsing binaries and good abundance constraints
- Lower RGB masses can be predicted from MSTO masses
 Cluster (and EB) distances test radius inferences

Radius and Mass Scaling in Clusters

- Discrepancy for clump giant radii relative to RGB radii (~0.05) tied to structural properties
- Small but real mass difference ~0.06 Msun, RGB vs. that expected from EB constraints on the MS (Brogaard et al. 2012)

Miglio et al. (2012)

Figure 3. NGC6791: ratio between radii determined using L and T_{eff} (R_{CMD}), and those obtained via Eq. 4 (R_{seismo}). The mass of each star determined via Eq. 3 is colour coded.

The APOKASC Approach

- APOGEE sample: ~2,400 Red Giants
- Analyze light curves, extract mean asteroseismic properties (Δν, ν_{max})
- 1916 stars that pass quality control checks
- Scaling relations + grid-based modeling
- Check systematics
 - Spectroscopic inputs
 - Multiple pipelines

Impact of Systematic Shifts in Spectroscopic Inputs

The Bottom Line: Formal Uncertainties in R,M

Validation of our Kepler field results

Good Agreement with Optical Spectroscopy of Giants

A Test of Atmospheres

The difference between asteroseismic and spectroscopic log g is different for RC, RGB
 Is this an atmospheres or asteroseismic

systematic?

Results: Snapping Into Focus

Mass Trends, Fixed [Fe/H]

Metallicity Trends, Fixed Mass

A Metallicity-Dependent Mixing Length?

The KIC Re-assessed

 We can evaluate the underlying stellar parameters against the KIC:
 – T_{eff} (depends on extinction)

– Log g – [Fe/H]

KIC Temperatures: An Overestimated Extinction

KIC Extinction

Zero Extinction

There is a large offset in T_{eff} between the IRFM and the spectroscopic scale if we adopt the KIC extinction map...

An Independent Test: SED Fitting of Kepler Stars with Asteroseismic log g

Rodrigues et al. 2014, Submitted ApJ

1916 distances and extinctions for red giants with spectra and asteroseismic log g

Bottom Line: Inferred extinction ~0.41-0.42 KIC (also SAGA)

Rodrigues et al. Extinction Map

KIC Extinction Map

SFD (Maximum) Extinction Map

Trouble In Halo-Land

Epstein et al. (2014)

Halo Star Masses From SR Are Well Above Expected Values....

Do We Need to Go Beyond Scaling Relations?

Calibrate...Correct...OR

Boutique Modeling: Reasonable Mass!

Parallax+ Δv : Reasonable Mass!

The Next Step: 10,000 spectra for December 2014

Future: SDSS-4 + K2

SDSS-4: will target a full magnitude and color limited Kepler sample
 (T_{eff} < 6500 K, H <11); giants + dwarfs
 K2 – numerous APOGEE targets already in fields, used for targeting. More opportunities possible (ask!)

Moving Forward

Spectroscopy

- Progress in understanding systematic shifts
- Individual abundance measurements
- Tying spectroscopy to the fundamental scale

Asteroseismology

- Evolutionary state diagnostics
- Separating systematic and random errors
- Calibrating against fundamental measurements (frequencies are not masses...)

Sample Selection Biases Must Be Assessed for Population Studies

Conclusions

- Papers submitted distances, asteroseismology, spectroscopy for large Kepler red giant samples (tables coming)
- KIC performance assessed
- Gaia benchmarks
- Coming soon:
 - Dwarf and Subgiant Catalog
 - Dwarf Metallicity Control Sample
 - CoRoGEE

Upcoming Conferences:

Santa Barbara, CA The Milky Way and its Stars: Stellar Astrophysics, Galactic Archaeology, and Stellar Populations Feb 2, 2015 - Feb 6, 2015

Bad Honnef, Germany Reconstructing the Milky Way History: Spectroscopic Surveys, Asteroseismology and Chemodynamical Models June 1, 2015- June 5, 2015