## The internal rotation profile of a gravity mode B star pulsator in the Kepler field THE UPS AND DOWNS IN THE FORWARD MODELLING OF 19 **OUASI-EOUALLY SPACED ROTATIONALLY-SPLIT DIPOLE MODES**

E. Moravveji, C. Aerts, A. Tkachenko, S. A. Triana, S. Bloemen, J. Southworth

### Péter I. PÁPICS | KU Leuven (Belgium) CoRoT 3 - KASC 7 Toulouse 08/07/2014





# Introduction GOALS

### Calibrate stellar structure and evolution models Cornerstones in stellar astrophysics

GX chemical enrichment, age of Universe, stellar life cycles, planetary system formation, stellar cluster dynamics, etc.

### **MASSIVE STARS**

Convective core + radiative envelope (on MS) Important internal **mixing processes** 

### **Core overshooting**

Internal differential rotation

etc.

### Many **uncertainties**! -> Effecting the **lifetime**!

Only **12 stars with**  $a_{ov}$  and **3 with**  $\sim \Omega(r)$  so far Dependence on *magnetic field*? *Mass*? Contribution to *angular momentum transport*?

### **SPB (SLOWLY PULSATING B STARS)**

 $M \approx 2.5 - 8 M_{Sun}$ , 11 000 - 22 000 K

High-order gravity modes ( $P \approx 0.5 - 3 \text{ day}$ )

Characteristic period spacing



# *Kepler* GO on 8 interesting B-type stars **TOWARDS A GENERAL PICTURE**

Slow & fast rotators, single & binary stars across the instability strips [**Pápics et al. 2013** & in preparation]

| Amplitude (ppm) | 400000  |                                                     |
|-----------------|---------|-----------------------------------------------------|
|                 | 300000  |                                                     |
|                 | 200000  |                                                     |
|                 | 100000  |                                                     |
|                 | 0<br>26 | 60 265 270 275 280 285 290 29<br>Time (BJD-2454833) |



### KIC 10526294 FUNDAMENTAL PARAMETERS ISIS@WHT spectra



### KIC 10526294 FUNDAMENTAL PARAMETERS One of the coolest SPBs

Slow (projected) rotation No sign of binary component



| S | Parameter                                      | KIC 1(     |
|---|------------------------------------------------|------------|
|   | $T_{\rm eff}({ m K})$                          | 11550      |
|   | $\log g (cgs)$                                 | 4.1        |
|   | Ζ                                              | 0.016      |
|   | Gaussian line broadening (km s <sup>-1</sup> ) | 18         |
|   | $\xi_{\rm t} ({\rm kms^{-1}})$                 | 2.0        |
|   | Spectral type <sup><i>a</i></sup>              | <b>B</b> 8 |



### KIC 10526294 **KEPLER PHOTOMETRY** Q1-Q17 LC (4 years, 91% cover.)

Typical g mode SPB spectrum



## KIC 10526294 **PERIOD SPACING & ROTATIONAL SPLITTING**

19 rotationally split g modes with nearly equal period spacing Observed trend in splittings -> non-rigid internal rotation profile



## KIC 10526294 **PERIOD SPACING & ROTATIONAL SPLITTING**

19 rotationally split g modes with nearly equal period spacing Observed trend in splittings -> non-rigid internal rotation profile



## KIC 10526294 **PERIOD SPACING & ROTATIONAL SPLITTING**

19 rotationally split g modes with nearly equal period spacing Observed trend in splittings -> non-rigid internal rotation profile



### KIC 10526294 SEISMIC MODELLING | OVERVIEW **FORWARD MODELLING:** from observations to physical constraints

### **Observations**

Ground-based multicolour photometry high-resolution spectroscopy Space-based uninterrupted photometry no colour information

Data analysis

### **Fundamental parameters**

 $T_{\rm eff}$ , log g, Zfrom SED fitting, spectral synthesis

### **Observed pulsation modes**

List of significant frequencies from frequency analysis techniques Mode ID: Quantum numbers (*I*,*m*) from photometric amplitude ratios from line profile variations

### **Model parameters**

 $M, X_{C}, Z, \alpha_{ov}$ 

\*First approach: assuming a fully mixed core overshoot region code (MESA)

### **Stellar models**

For specified input physics physical conditions in the star

> **Pulsation** code (GYRE)

### **Theoretical pulsation modes**

List of frequencies with (*n*,*l*,*m*)

### **Constraints**

Comparison ( $\chi^2$ )

hidethe

Fundamental parameters / Shortcomings in included physics / Unknown stellar properties (e.g., magnetic field)









## KIC 10526294 SEISMIC MODELLING | RESULTS

| Young star $X_2 > 0.64$                              |       |               |          |                       |             |                           |        |         |
|------------------------------------------------------|-------|---------------|----------|-----------------------|-------------|---------------------------|--------|---------|
| $10 \text{ ung star. } \Lambda_{\mathcal{C}} > 0.04$ | Model | $T_{\rm eff}$ | $\log g$ | Mass                  | Radius      | Core overshoot $(f_{ov})$ | Ζ      | $X_c$   |
| Overshooting: $\alpha_{ov} \leq 0.15$                |       | Κ             | dex      | $\mathcal{M}_{\odot}$ | $R_{\odot}$ |                           | mass f | raction |
|                                                      | 1     | 12470         | 4.30     | 3.20                  | 2.10        | 0.000                     | 0.020  | 0.693   |
| Rotation period: ~188 days                           | 2     | 11760         | 4.27     | 3.00                  | 2.11        | 0.015                     | 0.020  | 0.665   |
|                                                      | 3     | 12310         | 4.30     | 3.15                  | 2.09        | 0.006                     | 0.020  | 0.690   |
|                                                      | 4     | 13 140        | 4.33     | 3.25                  | 2.04        | 0.000                     | 0.016  | 0.696   |
|                                                      | 5     | 12610         | 4.31     | 3.20                  | 2.07        | 0.003                     | 0.019  | 0.695   |





## KIC 10526294 SEISMIC MODELLING | RESULTS

| Young star $X_2 > 0.64$               |   |               |          |                       |             |                           |        |         |
|---------------------------------------|---|---------------|----------|-----------------------|-------------|---------------------------|--------|---------|
| 10  ung star.  (> 0.04)               |   | $T_{\rm eff}$ | $\log g$ | Mass                  | Radius      | Core overshoot $(f_{ov})$ | Ζ      | $X_c$   |
| Overshooting: $\alpha_{ov} \leq 0.15$ |   | Κ             | dex      | $\mathcal{M}_{\odot}$ | $R_{\odot}$ |                           | mass f | raction |
|                                       | 1 | 12470         | 4.30     | 3.20                  | 2.10        | 0.000                     | 0.020  | 0.693   |
| Rotation period: ~188 days            | 2 | 11760         | 4.27     | 3.00                  | 2.11        | 0.015                     | 0.020  | 0.665   |
|                                       | 3 | 12310         | 4.30     | 3.15                  | 2.09        | 0.006                     | 0.020  | 0.690   |
|                                       | 4 | 13 140        | 4.33     | 3.25                  | 2.04        | 0.000                     | 0.016  | 0.696   |
|                                       | 5 | 12610         | 4.31     | 3.20                  | 2.07        | 0.003                     | 0.019  | 0.695   |



|    |                               |     |   |   |            |      | • |   |   | -    |     |           |   |   |              |              |          | 1            |          |          |
|----|-------------------------------|-----|---|---|------------|------|---|---|---|------|-----|-----------|---|---|--------------|--------------|----------|--------------|----------|----------|
| 0  | ▼ • • • • • • • • • • • • • • |     |   |   | !<br>      | <br> |   |   |   | 1    | ).  | . 🕒 .<br> | 7 |   | i di si<br>I |              | <br>     | <br>         |          | . Л.<br> |
|    |                               | I   | Ι | Ι | Ι          | Ι    |   | Ι | Ι | I    | I   | Ι         |   |   | $\checkmark$ | Ι            | Ι        | Ι            |          | I        |
|    |                               |     | Ι | Ι | Ι          | Ι    |   | Ι |   | I    | - 1 | Ι         | Ι | Ι | <b>v</b>     | $\downarrow$ | Ι        | Ι            |          | I        |
|    | _                             | - 1 | Ι | Ι | Ι          | Ι    |   | Ι | Ι | Ι    | - 1 | Ι         |   | Ι |              | Ĭ            | Ι        | Ι            |          | I        |
| -z |                               |     | Ι | Ι | Ι          | Ι    |   | Ι | Ι | I    | - 1 | Ι         | Ι | Ι |              | Ι            | $\nabla$ | Ι            |          | I        |
|    |                               | I   | Ι | Ι | Ι          | Ι    |   | Ι | Ι | I    | I   | Ι         |   | Ι | Ι            | Ι            | Ι        | $\checkmark$ | Ι        | I        |
|    |                               | I   | Ι | Ι | Ι          | Ι    | Ι | Ι | I | I    | I   | Ι         | Ι | Ι | Ι            | Ι            | Ι        | I            |          | I        |
| Л  |                               |     | Ι | Ι | Ι          | Ι    | Ι | Ι | Ι | I    | I   | Ι         | Ι | Ι | Ι            | Ι            | Ι        | Ι            | $\nabla$ | I        |
| -4 |                               | I   | Ι | Ι | Ι          | Ι    |   | Ι | Ι | I    | Ι   | Ι         | I | Ι | Ι            | Ι            | Ι        | Ι            | Ι        |          |
|    |                               | I   | Ι | I | I          | Ι    | I | Ι | I | I    | I   | Ι         | I | Ι | Ι            | I            | I        | I            | I        |          |
|    |                               | I   | I | I | Ι          | Ι    |   | Ι | I |      | I   | Ι         | I | I | Ι            | I            | I        | I            | I        | I        |
| 6  |                               |     |   |   |            |      |   |   |   |      |     |           |   |   |              |              |          |              |          |          |
| -0 | _                             |     |   |   |            |      | 1 |   |   |      | 1   |           |   |   | 1            |              |          |              | 1        | 1        |
|    |                               |     | 1 |   |            |      | 1 | 1 | 1 |      |     | 1         |   | 1 | 1            |              |          |              | 1        |          |
|    |                               |     | 1 |   |            |      | 1 | 1 | 1 |      |     | 1         |   | 1 |              |              | 1        | 1            |          |          |
| 0  |                               |     | 1 |   | 1          |      | 1 | 1 | 1 |      | 1   | 1         | 1 | 1 | 1            | 1            | 1        | 1            | 1        |          |
| -8 | _                             |     | 1 |   | 1          |      | 1 | 1 | 1 |      | 1   | 1         |   | 1 | 1            | 1            | 1        | 1            | 1        | 1        |
|    |                               |     | 1 |   | 1          |      | 1 | 1 | 1 |      |     | 1         | 1 | 1 | 1            | 1            | 1        | 1            | 1        | 1        |
|    |                               |     |   |   |            |      | 1 | 1 | 1 |      |     | 1         |   | 1 | 1            |              | 1        |              | 1        |          |
| 10 |                               |     | 1 | ì | 1          | ì    |   | 1 | 1 | - Li |     | 1         |   | 1 | 1            | 1            | 1        | - i          | 1        |          |
| TO |                               | 1   | 0 |   |            |      |   |   |   | 1    | 5   | 1         |   |   |              |              |          | 2 (          | )        |          |
|    |                               | ±.  | • |   | Period (d) |      |   |   |   |      |     |           |   |   |              |              |          |              |          |          |



 $\nabla$ 

 $\nabla$ 

 $\nabla$ 

 $\nabla$ 

2.5

## KIC 10526294 **DERIVATION OF THE INTERNAL ROTATION PROFILE**

Inversion of the 19 rotationally split dipole modes [Triana et al. submitted] Starting from kernels of the 5 best forward models by regularised least-squares

## Counter-rotation in the stellar envelope with $\Omega_{core} / \Omega_{surface} = -0.53$



Angular momentum distribution consistent with recent numerical simulations Internal gravity waves (IGW) can transport angular momentum leading to a slowly rotating core and a counter-rotating outer radiative envelope. IGWs can also explain KIC 11145123 [Kurtz et al. 2014]

Result independent of the model (1-5), radial grid resolution, and of the smoothing parameter



## Future **IMPROVED INPUT PHYSICS**

Extra mixing [Moravveji et al. in preparation] Magnetic fields, rotation, excitation issues, etc.

### **B STARS WITH K2**

Limited frequency resolution Supporting ground-based spectroscopy





## KIC 10526294 **CONCLUSIONS** [Pápics et al. 2014, in press for A&A]

- A new slowly pulsating B-type star near the cool edge of the SPB instability strip
- Fundamental parameters from follow-up spectroscopy
- Series of 19 dipole modes nearly equally spaced in period
- Each of the dipole modes shows very narrow rotationally split components
- The amount of splitting is systematically higher towards longer periods, which already points towards a non-rigid internal rotation profile
- From forward modelling we constrain the central hydrogen fraction  $X_c > 0.64$
- The core overshooting parameter is constrained to be  $\alpha_{ov} \leq 0.15$
- This is the third detection of a series of quasi-equally spaced gravity modes in a main sequence B-type star [Degroote et al. 2010 & Pápics et al. 2012]
- This is the first actual seismic modelling of an SPB star
- From a frequency inversion  $\Omega_{core} / \Omega_{surface} = -0.53$  (counter-rotation in envelope)









