Structural glitches near the cores of red giants revealed by oscillations in g-mode period spacings

Margarida Cunha

in collaboration with

D. Stello, P.P. Avelino and J. Christensen-Dalsgaard
Structural glitches near the cores of red giants revealed by oscillations in g-mode period spacings

Margarida Cunha

in collaboration with

D. Stello, P.P. Avelino and J. Christensen-Dalsgaard
Structural glitches near the cores of red giants revealed by oscillations in g-mode period spacings

Margarida Cunha

in collaboration with

D. Stello, P.P. Avelino and J. Christensen-Dalsgaard
Structural glitches near the cores of red giants revealed by oscillations in g-mode period spacings

Margarida Cunha

in collaboration with

D. Stello, P.P. Avelino and J. Christensen-Dalsgaard
Structural glitches near the cores of red giants revealed by oscillations in g-mode period spacings.

Why?
Identify particular moments of evolution
Infer details of the deep internal structure
Models under study

a – ASTEC
b – MESA
Models under study

- ASTEC
- MESA
Models under study

- ASTEC
- MESA
Models under study

How do spikes in N affect the periods of the oscillations?

a – ASTEC
b – MESA
Models under study

\[\log \left(\frac{L}{L_{\odot}} \right) = \log(T_{\text{eff}}) \]

- a – ASTEC
- b – MESA
Models under study

How do spikes in N affect the period spacing of the oscillations?

a – ASTEC
b – MESA
Glitch or no Glitch?
Glitch or no Glitch?

The Space Photometry Revolution
CoRoT Symposium 3, Kepler KASC-7 joint meeting
Margarida Cunha
Toulouse 6-11 Jul 2014
Glitch or no Glitch?

\[\nu = 50 \mu \text{Hz} \]

\[\nu = 23 \mu \text{Hz} \]
Pure g-modes (model a)

Analytical toy-model:
Cowling approximation
Infinitely thin spike
Pure g-modes (model a)

Analytical toy-model:
Cowling approximation
Infinitely thin spike

\[
\Delta \Pi \approx \frac{1}{1 + \frac{\lambda}{\omega_B B^2}} \left[\frac{\omega_g^*}{\omega} \cos \left(2 \frac{\omega_g^*}{\omega} \right) + \left(1 - \frac{\lambda \omega_g^*}{\omega^2} \right) \sin^2 \left(\frac{\omega_g^*}{\omega} + \frac{\pi}{4} \right) \right],
\]

where \(\omega_g^* = L \int_{r_*}^{r_2} \frac{N_0}{r} dr \) and \(B^2 \) is given by,

\[
B^2 = \left[1 - \frac{\tilde{A}}{2\omega} \cos \left(2 \frac{\omega_g^*}{\omega} \right) \right]^2 + \left[\frac{\tilde{A}}{\omega} \sin^2 \left(\frac{\omega_g^*}{\omega} + \frac{\pi}{4} \right) \right]^2.
\]
Pure g-modes (model a)

Numerical solution
Full numerical solution (model a)
The signature of the glitch in the period spacing is a change in the depth of the dips in the period spacing.
Stello KASC6

H-R Diagram

Propagation Diagram

ΔP vs. Freq.

ASTEC models
Stello KASC6

H-R Diagram

Propagation Diagram

ΔP vs. Freq.

ASTEC models

The Space Photometry Revolution
CoRoT Symposium 3, Kepler KASC-7 joint meeting
Margarida Cunha
Toulouse 6-11 Jul 2014
(model b)
Pure g-modes or full solution? (model b)
Including coupling with p-modes (model b)

The Space Photometry Revolution
CoRoT Symposium 3, Kepler KASC-7 joint meeting
Margarida Cunha
Toulouse 6-11 Jul 2014
Including coupling with p-modes (model b)
Including coupling with p-modes (model b)
Conclusions

• Models predict that some spikes in the Buoyancy frequency can affect the period spacing in red giant stars

• We understand the signatures left by these spikes

• If found in present or future space-based data, these signatures may allow us to:

 ➢ Identify very specific evolutionary phases
 (e.g., Luminosity bump)

 ➢ Measure the “position” of the H-shell burning layer
Pure g-modes (model a)

Analytical toy-model:
Cowling approximation
Infinitely thin spike

\[\Delta \Pi \approx \frac{\Delta \Pi_{as}}{1 + \frac{\lambda}{\omega_B^2} \left[\frac{\omega_g^*}{\omega} \cos \left(\frac{2 \omega_g^*}{\omega} \right) + \left(1 - \frac{\lambda \omega_g^*}{\omega^2} \right) \sin^2 \left(\frac{\omega_g^*}{\omega} + \frac{\pi}{4} \right) \right]} \]

where \(\omega_g^* = \int_{r_*}^{R} \frac{N_0}{r} dr \) and \(B^2 \) is given by,

\[B^2 = \left[1 - \frac{\tilde{A}}{2 \omega} \cos \left(\frac{2 \omega_g^*}{\omega} \right) \right]^2 + \left[\frac{\tilde{A}}{\omega} \sin^2 \left(\frac{\omega_g^*}{\omega} + \frac{\pi}{4} \right) \right]^2 \]

![Graph showing \(\Delta \Pi \) vs. \(\nu \) for model a]