HD 97658 and its super-Earth

Spitzer & MOST transit analysis and seismic modeling of the host star

Valerie Van Grootel
(University of Liege, Belgium)

M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge), D. Dragomir (UC Santa Barbara), and the Spitzer team
1. Introducing HD 97658 and its super-Earth

The second brightest star harboring a transiting super-Earth

HD 97658 (V=7.7, K=5.7)

- $T_{\text{eff}} = 5170 \pm 50$ K (Howard et al. 2011)
- $[\text{Fe/H}] = -0.23 \pm 0.03 \Rightarrow \sim Z$
- $d = 21.11 \pm 0.33$ pc ; from Hipparcos (Van Leeuwen 2007)

HD 97658 b, a transiting super-Earth

- Discovery by Howard et al. (2011) from Keck-Hires RVs:
 - $M_p \sin i = 8.2 \pm 1.2$ M_{earth}
 - $P_{\text{orb}} = 9.494 \pm 0.005$ d
- Transits discovered by Dragomir et al. (2013) with **MOST**: $R_p = 2.34 \pm 0.18$ R_{earth}

From Howard et al. (2011)

From Dragomir et al. (2013)
2. Modeling the host star HD 97658

$R_p \propto R_*$

$M_p \propto M_*^{2/3}$

+ the **age** of the star is the best proxy for the age of its planets

(Sun: 4.57 Gyr, Earth: 4.54 Gyr)

- With Asteroseismology: T. Campante, V. Van Eylen’s talks
- Without Asteroseismology: stellar evolution modeling
2. Modeling the host star HD 97658

- $d = 21.11 \pm 0.33$ pc, $V = 7.7 \Rightarrow L_* = 0.355 \pm 0.018$ L_{\odot}
- $+T_{\text{eff}}$ from spectroscopy: $R_* = 0.74 \pm 0.03$ R_{\odot}
- Stellar evolution code CLES (Scuflaire et al. 2008)
 \[\Rightarrow M_*, \text{ age with } T_{\text{eff}}, [\text{Fe/H}] \text{ and } L_* \text{ as inputs (with 1}\sigma\text{ uncertainties) } \]

\[M_* = 0.77 \pm 0.05 \, M_{\odot} \]
- No constrain on age

\[\alpha_{\text{MLT}} = 1.8; \text{ no overshooting} \]
Mixture AGSS09
CEFF EoS
Opacities OPAL05+Ferguson06
Several Y_{ini}

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse
3. Spitzer observations

- « Warm » Spitzer IRAC camera at 4.5μm
- As part of the program to search transits for low-mass planets found in RV (Programs 60027 and 90072, PI M. Gillon)
- 6h-long lightcurve acquired on Aug 10, 2013 after MOST’s ephemeris

Blue dots: raw data
Red curve: photometric model
(= Spitzer systematics)
3. Spitzer observations

MOST transit window (17 orbits after)

Spitzer fully confirms, within 1σ, the MOST ephemeris
4. The MCMC method to characterize HD 97658b

I used Monte-Carlo Markov Chain (MCMC) code of Gillon et al. (2012), with jump parameters (those for which the chain is varying):

• With uniform prior distribution: mid-transit time T_0, transit depth d_F, transit width W, P_{orb}, …
• With Gaussian prior distribution: stellar mass M_* ($0.77 \pm 0.05 \, M_\odot$), luminosity ($0.355 \pm 0.018 \, L_\odot$), T_{eff} ($5170 \pm 50 \, K$) and metallicity ($[\text{Fe/H}] = -0.23 \pm 0.03$)

Jump parameters \Rightarrow model to compare to data through a merit function

$$Q_n^2 = \sum_{k=1}^{l} \frac{(\nu_k - \mu_k)^2}{\sigma^2_{\nu_k}} + \sum_{j} \frac{(P_{n,j} - P_{0,j})^2}{\sigma^2_{P_{0,j}}}$$

- data
- model
- penalty for jump parameter with Gaussian prior

• Results: Probability Density Functions (PDFs) for each jump parameter + for derived parameters: planet mass, radius,…

![Stellar mass](stellar_mass.png)

![Transit depth](transit_depth.png)
5. Global MCMC analyses of RVs, Spitzer and MOST

171 Keck-Hires RVs + 1 Spitzer transit + 3 MOST transits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jump parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jump parameter, uniform prior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit depth, Spitzer</td>
<td>dF</td>
<td>773 ± 42</td>
<td>ppm</td>
</tr>
<tr>
<td>Transit width</td>
<td>W</td>
<td>0.1187 ± 0.0012</td>
<td>days</td>
</tr>
<tr>
<td>Mid-transit time-2450000</td>
<td>T_0</td>
<td>$6523.12540^{+0.00060}_{-0.00056}$</td>
<td>BJD-TDB</td>
</tr>
<tr>
<td>Impact parameter $b' = a \cos i / R_*$</td>
<td></td>
<td>$0.35^{+0.13}_{-0.21}$</td>
<td>R_*</td>
</tr>
<tr>
<td>Orbital period</td>
<td>P</td>
<td>$9.4903^{+0.0016}_{-0.0015}$</td>
<td>days</td>
</tr>
<tr>
<td>Derived planet parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planet radius (at 4.5μm)</td>
<td>R_P</td>
<td>$2.247^{+0.098}_{-0.095}$</td>
<td>R_\oplus</td>
</tr>
<tr>
<td>Planet mass</td>
<td>M_P</td>
<td>$7.55^{+0.83}_{-0.79}$</td>
<td>M_\oplus</td>
</tr>
<tr>
<td>Planet density</td>
<td>ρ_P</td>
<td>$3.90^{+0.70}_{-0.61}$</td>
<td>g cm$^{-3}$</td>
</tr>
<tr>
<td>Planet surface gravity</td>
<td>$\log g_P$</td>
<td>$3.166^{+0.059}_{-0.061}$</td>
<td></td>
</tr>
<tr>
<td>Orbital inclination</td>
<td>i</td>
<td>$89.14^{+0.52}_{-0.36}$</td>
<td>deg</td>
</tr>
<tr>
<td>Orbital semi-major axis</td>
<td>a</td>
<td>$0.080^{+0.0017}_{-0.0018}$</td>
<td>AU</td>
</tr>
<tr>
<td>Orbital eccentricity</td>
<td>e</td>
<td>$0.078^{+0.057}_{-0.053}$</td>
<td></td>
</tr>
<tr>
<td>Argument of the periastron</td>
<td>ω</td>
<td>71^{+65}_{-63}</td>
<td>deg</td>
</tr>
<tr>
<td>RV orbital semi-amplitude</td>
<td>K</td>
<td>$2.73^{+0.26}_{-0.27}$</td>
<td>m/s</td>
</tr>
</tbody>
</table>
6. HD 97658b, a key object for super-Earth characterization

Just a word about the uncertainties

Host star:
-3% on R_*
-8% on M_*

Planet:
-5% on R_P
-11% on M_P
+ Spitzer & Keck RVs systematics

CHEOPS: uncertainties on planet will come from the star
PLATO and asteroseismology: star + planet < 5%

Note: Dragomir et al. (2013), with the same MOST light curves:

$$R_P = 2.34 \pm 0.18 \ R_{\text{earth}} \ (8\%)$$

BUT they used spectroscopic log g and not L_* from Hipparcos
6. HD 97658b, a key object for super-Earth characterization

« True » super-Earth, water-world, mini-Neptune, dwarf gas planet ?
6. HD 97658b, a key object for super-Earth characterization

« True » super-Earth, water-world, mini-Neptune, dwarf gas planet ?

$$R_P = 2.247^{+0.098}_{-0.095} \quad R_{\text{Earth}}$$
$$M_P = 7.55^{+0.83}_{-0.79} \quad M_{\text{Earth}}$$

$$\rho_P = 3.90^{+0.70}_{-0.61} \quad \text{g cm}^{-3}$$

$$\rho_{\text{Earth}} = 5.5 \text{ g cm}^{-3}$$
$$\rho_{\text{Jupiter}} = 1.3 \text{ g cm}^{-3}$$
6. HD 97658b, a key object for super-Earth characterization

Internal composition (D. Valencia)

\(T_{\text{eq}} \sim 750 \text{ K} \)

HD 97658b
\(M = 7.55 \, M_\oplus \)

Rocks > 60%
Water+Ices 0-40%
H-He 0-2%

Ices: methanene-ammonia

Valerie Van Grootel – CoRoT/Kepler July 2014, Toulouse
6. HD 97658b, a key object for super-Earth characterization

Planet atmosphere (H. Knutson)

Hubble Space Telescope WFC3 (19 bandpasses in 1.1-1.6 μm)

Excluded: • Cloud-free solar and 50x solar composition atmosphere (red)
Possibilities: • Water atmosphere (blue)
(2σ…) • Solar composition atmosphere with cloud/hazes at 1 mbar (green)

Knutson et al. (2014)
ArXiv1403.4602
7. What asteroseismology can bring to HD 97658

- I computed oscillation adiabatic properties of stellar (consistent) models that respect the T_{eff}, L_*, $[\text{Fe/H}]$ observational constraints.
- Large separations $\Delta \nu = \nu_{n+1,0} - \nu_{n,0}$ and small separations $\delta \nu = \delta \nu_{2n,0} = \nu_{n,0} - \nu_{n-1,2}$ are given here at their ν_{max}'s (where the observed pulsation spectrum is expected to be).

C-D diagram

$\sim 1 \mu\text{Hz}$ accuracy on $\Delta \nu$ and $\delta \nu_{2n,0}$ will help to get better stellar mass & age.
8. Conclusion & Prospects

Conclusion:

HD 97658b is a key transiting super-Earth

- HD 97658b is an intermediate density super-Earth ⇒ composition of such objects? (internal composition? Volatiles? Thick atmosphere?)
- Orbiting a bright star (V=7.7, K=5.7) ⇒ very important for future atmospheric characterization (JWST, ...)
- Formation of such a planet?
- Characterizing the host star (mass, radius, age) is essential

Future observations:

- Coming: 3 more transits with Spitzer (PI D. Dragomir)
- GAIA ⇒ very accurate distance, luminosity, and stellar radius (but not sufficient to have Y_{ini} and α_{MLT})
- CHEOPS & TESS: Accurate planet radius in visible
- Asteroseismic observations to improve the stellar mass and age ⇒ we need PLATO!